

Ain Shams University Faculty of Science Chemistry Department

Photo analytical methods for the determination of some industrial potentials materials

A Thesis

Submitted for the Degree of Master of Science
As Partial Fulfillment for Requirements of Master of Science
"Chemistry Department"

Thesis submitted By Ali Hussien Ali Mohamed

B.Sc. (Chemistry) (2008)

To
Department of Chemistry
Faculty of Science
Ain Shams University

For
The Degree
M.Sc. in Analytical Chemistry
(2015)

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet Photo analytical methods for the determination of some industrial potentials materials

By

Ali Hussien Ali Mohamed

B.Sc. in major chemistry, Faculty of science Ain Shams University

(2008)

This Thesis for master degree has been approved by:

Dr. Mohamed Said Attia

Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University.

Dr. Ahmed Osman Youssef

Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University.

Dr. Dina Yehia Sabry

Associate Professor of Analytical chemistry and inorganic chemistry, Faculty of Science, Ain Shams University.

Chairman of Chemistry Department Prof. Dr. Hammed Derbala

Contents

	Acknowledgement	V1	
	Aim of the work vii		
	Abbreviations	ix	
	List of figures	xii	
	List of tables	xiv	
	Chapter 1: Intro	oduction	
1	Optical sensors		1
1.1	Introduction on optical ser	nsors	1
1.2	Radiative and non-radiative	e transitions in	5
	trivalent lanthanide ions		
1.2.1	Electronic structure and en	nergy levels	٦
1.2.2	Radiative transitions		٨
1.2.3	Non-radiative relaxation of	of excited lanthanide	11
	ions		
1.3	Lanthanide-doped lumine	scent materials	١٤
1.3.1	Phosphors		١٤
1.3.2	Doped crystal and glasses		١٥
1.4	Luminescent lanthanide co	omplexes	١٧
1.5	Lanthanides as structural a	and analytical	77
	luminescent probes		
1.5.1	Analytical probes		2۳
1.6	Quenching of luminescen	ce	27

1.6.1	.6.1 Types of quenching of luminescence	
1.6.1.1	Collisional (Dynamic) quenching	2٦
1.6.1.2	Static quenching	24
1.6.2	Theory of collisional quenching	24
1.6.3	Theory of static quenching	2٨
1.7	Solvent effect	30
1.7.1	Influence of the solvent on the intensity of absorption spectra	32
1.7.2	Influence of the solvent on the intensity of luminescence spectra	33
1.8	Literature review	33
1.9	References	44
	Chapter 2	
Nalbup	ohin HCl assessment by the quenching of the emission	on of
ŗ	Гb -4'carboxybenzo-18crown-6-ether optical sensor	
2.1	Introduction	52
2.2.	Experimental	54
2.2.1	Materials	54
2.2.2	Reagents	54
2.2.3	Apparatus	54
2.2.4	General procedure	55

2.2.4.1	Preparation of lanthanide complex Tb ³⁺ - CCE solution	55
2.2.4.2	Calibration curve	55
2.2.5	Determination of nalbuphin HCl in	55
2. 2.6	pharmaceutical preparations Determination of nalbuphin HCl in serum	<i></i>
	solution	55
2.3	Result and Discussion	56
2.3.1	Absorption spectra	56
2.3.2	Effect of experimental variables	57
2.3.2.1	Effect of the amount of (4'carboxybenzo-	57
	18crown-6-ether) and Tb ³⁺	31
2.3.2.2	Job's method Tb3+ and CCE	58
2.3.2.3	Effect of pH solvent	60
2.3.2.4	Effect of solvent	60
2.3.2.5	Emission spectra	62
2.3.3	Analytical performance	63
2.3.3.1	Analytical parameters of optical sensor method	63
2.3.3.2	Selectivity	66
2.3.3.3	Application to formulations	68
2.4	Conclusion	68
2.5	References	69

Chapter 3

Highly sensitive and selective spectrofluorimetric determination of activity of xanthine oxidase in serum samples using Tb - pyridine-2,6-dicarboxylic acid doped in sol-gel

3.1	Introduction	73
3.2	Experimental	75
3.2.1	Chemicals and reagents	75
3.2.2	Apparatus	76
3.2.3	Collection of the samples	77
3.2.3.1	Determination of (XO) in serum solution	77
2.2.3.2	Sample Preparation	78
3.2.4	Methods	78
3.2.4.1	Synthesis of Tb ⁺³ - PDA complex	78
3.2.4.2	Preparation of the nanoTb-pyridine-2.6	79
	dicarboxylic acid doped in sol gel matrix	
3.2.4.3	Preparation of working solution of Tb ³⁺ -PDA	80
	complex	
3.2.4.4	Preparation of uric acid solution	80
3.2.5	Recommended procedure	81
3.2.6	Standard method	81
3.3	Result and discussion	
3.3.1	Spectral characteristics	82

3.3.1.1	Absorption spectra	82	
3.3.1.2	Excitation and Emission spectra	83	
3.3.2	Optimization of Experimental Conditions	84	
3.3.2.1	Job's method Tb- pyridine-2.6dicarboxylic acid	84	
3.3.2.2	Effect of solvent	86	
3.3.2.3	Effect of pH	88	
3.3.3	Analytical performance	89	
3.3.3.1	Validation of the Method	89	
3.3.4	Analytical applications	95	
3.4	Conclusion	96	
3.5	References	97	

Acknowledgements

Above all, praise to **ALLAH**, the lord of the world, by whose grace this work has been completed and never leaving me during this stage.

My deep thanks also to *DR*. *Mohamed Said Attia*, associate Prof. of analytical chemistry, Chemistry Department, Faculty of Science, Ain Shams University for suggesting the point of research and his sincere supervision, guidance, invaluable advice and patience through the duration of this study.

I express my sincere gratitude to **Dr. Ahmed Osman youssef**, associate Prof. of analytical chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for his supervision, guidance and for his excellent close supervision during the progress of this work.

I express my sincere gratitude to **Dr. Dina Yehia Sabry,** associate Prof. of analytical chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for her supervision, guidance and for her excellent close supervision during the progress of this work.

Ali Hussien Ali

Aim of the work

The aim of the present work is the development and introduction of modern analytical techniques with high sensitivity and selectivity with low cost for the determination of some materials of industrial potential by Photo analytical methods such as Nalbuphin HCl(NAL) and important enzym in human body xanthin oxidase enzyme (XO) these methods consist of

- 1- Nalbuphine(NAL) concentration was determined by the quenching the luminescence intensity of Tb-4'carboxybenzo-18crown-6-ether [Tb-CCE] , CCE, 4'carboxybenzo-18crown-6-ether complex at λ_{ex} = 285 nm . [Tb-CCE] complex were measured in DMF at pH 6.5. PH of the sensorThis method is simple, accurate and can successfully be applied to the determination of (NAL) in pharmaceutical preparation and in serum samples with remarkably satisfactory results.
- 2- A novel spectrofluorimetric probe for determining xanthin oxidase enzyme (XO) in human serum samples was established and proposed. The optimal experimental conditions of working

solvent, pH and also the concentration of Tb pyridine-2,6-dicarboxylicacid [Tb-PDA] doped in sol fluorescence corresponding gel matrix maximum fluorescence intensity were investigated. Under optimal conditions, the quenched fluorescence intensity of [Tb-PDA]doped proportional to the gel matrix is concentration of (XO)in the range 1.4×10^{-8} to 5.7 $\times 10^{-5}$ mol L⁻¹ (r = 0.97). The detection limit (LOD) is 2.9×10^{-9} mol L⁻¹. This method is used for determination of (XO) in serum samples of patients.

List of Abbreviations

a The average value for three readings

(b) slope

(r²) The correlation coefficient
 2S+1 The total spin multiplicity

AC Acetaminophen

AFU the activity of the enzyme α -1-fucosidase

Eu sensitizer, denoted

BSE bovine spongiform encephalopathy

2-CNP 2-chloro-4-nitrophenol

CCE 4'carboxybenzo-18crown-6-ether

CF Caffeine

CL Confidence limit

CRAB cetyltrimethylammonium bromide

dpa 2,6-dipicolinate

DELFIA Dissociation Enhanced Lanthanide Fluorescence Immunoassay

Df dilution factor

DMF Dimethyl Formamide DMSO Dimethyl sulfo oxide

ED Electric dipole

EIS electrochemical impedance spectroscopy

EDFA's Erbium (III) doped fiber amplifiers
EDTA Ethylene diamine tetra acetic acid
EPR electron paramagnetic resonance
ET The energy transfer efficiency

Eu Erbium

The triplet state energy is transferred to the lanthanide ion

FE Fluorescence emission

F₀ the luminescence intensities in the absence of the quencher the luminescence intensities in the presence of the quencher

GAGs glycosaminoglycans GC Gas chromatography

Hx hypoxanthine

HPLC High performance liquid chromatographic

HS6B-XO heparin-Sepharose 6B

HTRF homogeneous time-resolved fluorescence

HCC Hepatitis Chronic Cirrhosis

ISC The intersystem crossing quantum yield

 K_D the Stern-Volmer constant

K_q the bimolecular quenching constant

 K_s the association constant for complex formation

J The total angular momentum

L The orbital angular momentum

Ln(III) Trivalent lanthanide ions

LOD Limit of detection LOQ Quantitation limits MD Magnetic dipole

MOF morphine

MRI Magnetic resonance imaging

MS Mass spectroscopy

N Number of measurement

NA Noradrenaline
NAL Nalbuphin HCl
NAT naltrexone
NIR Near infrared

NMR Nuclear magnetic resonance
PET photo-induced electron transfer
PDA pyridine-2,6-dicarboxylic acid
[Q] the concentration of quencher

QC Quantum cutting

R.S.D Relative standard deviation

RE	Relative error
S	Standard deviation
S_0	The ground state
S_1	The singlet excited state
S2	the second singlet state
SET	Singlet energy transfer
[Sm ⁺³ -DC]	samarium (III) –doxycycline
SPE	Solid-phase extraction
$ au_0$	the lifetime of the fluorophore in the absence of quencher
T_1	Triplet state
Tb	Terbium
Tb- CCE	Terbium-4'carboxybenzo-18crown-6-ether
Tb-PDA	Terbium- pyridine-2,6-dicarboxylic acid
TEOS	Tetra Ethoxy Silane
TOPO	tri-n-octyl phosphine oxide
TLC	thin-layer chromatography
UA	uric acid
UC	Up conversion
U/L	Xanthin oxidase activity
UPLC-MS/MS	Ultra performance liquid chromatography—tandem spectrometry method
UV-Visible	Ultraviolet –visible
VIS	Visible light
WHO	World Health Organization
X	xanthine
$\overline{\mathbf{X}}$	Average was taking for three readings by three analysts
XO	xanthine oxidase enzym
Yb	Ytterbium
ZnS: Ag	zinc sulfide doped with silver ions
ΔA	difference absorbance
μ	The molar absorptivity
μ_{E}	dipole moment in the excited state
μ_{G}	dipole moment in the ground state
Φ	Quantum yields

List of Figures

Figure	Title	Page
(1.1)	The place of the lanthanides in the Periodic Table. Lanthanum	2
	(La) is sometimes also counted under the lanthanides.	
(1.2)	Emission spectra of the Eu ³⁺ ion in different environments.	3
(1.3)	The energy levels of some of the trivalent lanthanide ions Nd ³⁺ , Er ³⁺ , Yb ³⁺ , Eu ³⁺ , Tb ³⁺ , Sm ³⁺ , Gd ³⁺ , and Pr ³⁺	7
(1.4)	The interactions leading to the different electronic energy levels for the [Xe] $4f^6 5d^0$ configuration of Eu ³⁺ (six electrons in the 4f orbitals).	8
(1.5)	Electronic transitions in lanthanide ions: (a) absorption / excitation, (b) excited state absorption, (c) direct excitation into a higher excited state, (d) "conventional" emission from the lowest luminescent state, (e) non-radiative relaxation, (f) radiative transition between excited states, (g) emission from a higher excited state.	10
(1.6)	Illustration of the sensitizing process (antenna effect) in lanthanide complexes.	19
(1.7)	Illustration of how a lanthanide luminescence emission is produced.	20
(1.8)	Illustration of how to design a sensor based on 'antenna effect.	22
(2. 1)	Structure of Nalbuphin HCl	53
(2. 2)	Absorption spectrum of (1)-1x10 ⁻⁴ mol/L carboxy –crown-ether (2)- with 1x10 ⁻⁴ mol/LTb-carboxy-crown-ether in DMF	56
(2. 3)	Molar ratio between Tb ³⁺ and 4'carboxybenzo-18crown-6- ether in DMF at λex/λem=285/545 nm.	58
(2.4)	Job's method for Tb-carboxy-crown-ether.	59
(2.5)	Luminescence emission spectra of 1x 10 ⁻⁴ mol/L Tb ³⁺ in the presence of 1x 10 ⁻⁴ mol/L of 4'carboxybenzo-18crown-6-ether in DMF at different pH.	60
(2.6)	Luminescence emission spectra of 1x 10 ⁻⁴ mol/L Tb ³⁺ in the presence of 1x 10 ⁻⁴ mol/L of 4'carboxybenzo-18crown-6-ether at pH=6.5 in different solvents	61