ALLEVIATION OF HEAT STRESS AND IMPROVEMENT OF PRODUCTIVE PERFORMANCE OF SHEEP UNDER HOT CLIMATIC CONDITIONS

By

SARIA MOHAMAD SAID ALMUSTAFA

B.Sc. Agric. Eng. (Animal Production), Aleppo University, 2000 M.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2009

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Animal Physiology)

Department of Animal Production Faculty of Agriculture Ain Shams University

ALLEVIATION OF HEAT STRESS AND IMPROVEMENT OF PRODUCTIVE PERFORMANCE OF SHEEP UNDER HOT CLIMATIC CONDITIONS

By

SARIA MOHAMAD SAID ALMUSTAFA

B.Sc. Agric. Eng. (Animal Production), Aleppo University, 2000 M.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2009

Under the supervision of:

Dr. Farouk A. E. Khalil

Prof. Emeritus of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Essmat B. Abdalla

Prof. of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Hamdy M. El-Sayed

Prof. of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Approval Sheet

ALLEVIATION OF HEAT STRESS AND IMPROVEMENT OF PRODUCTIVE PERFORMANCE OF SHEEP UNDER HOT CLIMATIC CONDITIONS

By

SARIA MOHAMAD SAID ALMUSTAFA

B.Sc. Agric. Eng. (Animal Production), Aleppo University, 2000 M.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2009

This thesis for Ph. D. degree has been approved by:

Dr. Hamdy Abdel-Aziz
Researcher Prof. of Animal Physiology, Desert
Research Center
Dr. Hanafy E. Elsobhy
Prof. Emeritus of Animal Physiology, Faculty of
Agriculture, Ain Shams University
Dr. Essmat B. Abdalla
Prof. of Animal Physiology, Faculty of Agriculture, Ain
Shams University
Dr. Farouk A. E. Khalil
Prof. Emeritus of Animal Physiology, Faculty of
Agriculture, Ain Shams University

Date of Examination: 14/3/2013

CONTENTS

ABBREVIATIONS	vii
LIST OF TABLES	ix
LIST OF FIGURES	xi
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	5
2.1. Climatic Heat Stress Feature	5
2.1.1. Physiological Responses	6
2.1.1.1. Rectal Temperature	6
2.1.1.2. Respiration Rate	7
2.1.1.3. Pulse Rate	8
2.1.2. Blood Parameters	10
2.1.2.1. Hematocrit	10
2.1.2.2. Total Protein	12
2.1.2.3. Total Cholesterol	13
2.1.2.4. Total Lipids	14
2.1.2.5. Glucose	15
2.1.2.6. Transaminase Enzymes	18
2.1.2.7. Creatinine	19
2.1.2.8. Blood Urea Nitrogen	19
2.1.3. Some blood oxidative stress indicators	21
2.1.3.1. Glutathione	21
2.1.3.2. Malondialdehyde (MDA)	22
2.1.4. Some blood hormones	24
2.1.4.1. Cortisol	24
2.1.4.2. Triiodothyronine and Thyroxine	
Hormones	25
2.1.5. Reproductive Performance	28
2.1.5.1. Conception rate	28
2.1.6. Production Performance	30
2.1.6.1. Body Weight and Growth Rate	30

2.1.6.2. Mortality Rate	31
2.1.7. Milk Yield and Composition	32
2.2. Vitamins	36
2.2.1. Chemical structures and functions of	
vitamins	36
2.2.1.1. Vitamin A	37
2.2.1.2. Vitamin C	38
2.2.1.3. Vitamin D	40
2.2.1.4. Vitamin E	42
2.2.2. Vitamins Deficiency	43
2.2.3. Effect of Vitamins on Blood Parameters	44
2.2.4. Effect of Vitamins on some blood oxidative	
stress indicators	47
2.2.5. Effect of Vitamins on Hormones	49
2.2.5.1. Cortisol	49
2.2.5.2. Thyroid Activity	49
2.2.6. Effect of Vitamins on Reproductive	
Performance	50
2.2.7. Effect of Vitamins on Body Weight and	
Growth Rate	53
2.2.8. Effect of Vitamins on Milk Production	55
2.3. Feed Enzyme Additives in Ruminants	56
2.3.1. Enzymes and Feed Digestion	57
2.3.2. Enzymatic Supplements and Growth	
Performance	58
2.3.3. Enzymes and Milk Production and	
Composition	60
2.3.4. Enzymatic Supplements and Blood	
Parameters	64
2.3.5. Enzymatic Supplements and Reproductive	
Performance	64

2.3.6. Enzymatic Supplements and	
Triiodothyronine and Thyroxine Hormones	66
III. MATERIALS AND METHODS	67
3.1. Experimental animals	67
3.2. Experimental design	67
3.3. Feeding and Management	68
3.4. Environmental conditions	68
3.5. "ZADO Product" Feed additive	68
3.6. Technical assessments	69
3.6.1. Milk sampling and chemical analysis	69
3.6.2. Physiological responses	69
3.6.2.1. Thermo-respiratory responses	69
3.6.2.1.1. Rectal temperature	69
3.6.2.1.2. Respiration rate	70
3.6.2.1.3. Pulse rate	70
3.6.2.2. Blood sampling and chemical analysis	70
3.6.2.2.1. Hematocrit value	70
3.6.2.2.2. Plasma glucose	71
3.6.2.2.3. Total protein	71
3.6.2.2.4. Total lipids	71
3.6.2.2.5. Total cholesterol	71
3.6.2.2.6. Transaminase Enzymes	71
3.6.2.2.7. Creatinine	72
3.6.2.2.8. Blood Urea Nitrogen	72
3.6.2.3. Oxidative stress indicators	72
3.6.2.3.1. Glutathione	72
3.6.2.3.2. Malondialdehyde	72
3.6.2.4. Plasma hormones	72
3.7. Reproductive performance of Ossimi ewes	73
3.8. Statistical analysis	73
IV. RESULTS AND DISCUSSION	75

4.1. Changes of Ambient Temperature and Relative	75
Humidity During Experiment	, 5
4.2. Changes of Rectal Temperatures During	
Experimental Period	76
4.3. Changes of Respiration Rate During	
Experimental Period	79
4.4. Changes of Pulse Rate During Experimental	
Period	82
4.5. Changes of Some Blood Constituents During	
Experimental Period	85
4.5.1. Hematocrit Value	85
4.5.2. Some Blood Metabolites	89
4.5.2.1. Plasma Proteins	89
4.5.2.2. Total Cholesterol	99
4.5.2.3. Total Lipids	102
4.5.2.4. Glucose	106
4.5.2.5. Transaminase Enzymes (ALT and AST)	109
4.5.2.6. Creatinine	113
4.5.2.7. Blood Urea Nitrogen (BUN)	117
4.6. Some Blood Oxidative Stress Indicators	120
4.6.1. Glutathione (GSH)	120
4.6.2. Malondialdehyde (MDA)	123
4.7. Some Blood Hormones	126
4.7.1. Cortisol	126
4.7.2. Thyroid Hormones (T3 and T4)	130
4.8. Milk Yield and Composition	135
4.8.1. Daily Milk Yield	135
4.8.2. Milk Protein	139
4.8.3. Milk Fat	142
4.8.4. Milk Lactose	145
4.9. Reproductive Performance	148
4.9.1. Estrous Cycle and Peak Plasma Progesterone	148

4.9.2. Conception Rate	151
4.9.3. Gestation Period and Plasma Progesterone	
During Pregnancy	152
4.9.4. Lambing Rate	153
4.9.5. Liter Size	155
4.9.6. Lamb Growth	156
4.9.7. Lamb Mortality Rate During Suckling Period	160
V. SUMMARY AND CONCLUSION	163
VI. REFERENCES	169

ABBREVIATIONS

Abbreviations	Description
ADG	Average daily gain
AG	Albumin/ globulin ratio
ALT	Alanine Aminotransferase
AsA	Ascorbic acid
AST	Aspartate minotransferase
AT	Ambient temperature
BUN	Blood Urea Nitrogen
CNS	Central nervous system
CR	Conception rate
DMI	Dry matter intake
FFE	Fibrolytic feed enzyme
G	Group
GSH	Glutathione
Hct	Hematocrit
MDA	Malondialdehyde
NMD	Nutritional muscular dystrophy
P_4	Progesterone
PR	Pulse rate
RBC	Red blood cells
RH	Relative humidity
RIA	Radio immunoassay
RR	Respiration rate
RT	Rectal temperature
T_3	Triiodothyronine
T_4	Thyroxine
THI	Temperature humidity index
TP	Total Protein
TRH	Thyroid releasing hormone
TSH	Thyroid stimulating hormone
VFAs	Volatile fatty acids

LIST OF TABLES

Table (1): Mean ambient temperature and relative humidity during experimental period	75
Table (2): Mean (± SE) rectal temperature of Ossimi ewes during experimental period	78
Table (3): Mean (± SE) respiration rate of Ossimi ewes during experimental period	81
Table (4): Mean (± SE) pulse rate of Ossimi ewes during experimental period	84
Table (5): Mean (± SE) hematocrit value(%) of Ossimi ewes during experimental period	88
Table (6): Mean (± SE) plasms total protein value (g/dL) of Ossimi ewes during experimental period	91
Table (7): Mean (± SE) plasma albumin (g/dL) value of Ossimi ewes during experimental period	92
Table (8): Mean (± SE) plasma globulin (g/dL) value of Ossimi ewes during experimental period	95
Table (9): Mean (± SE) Albumin/globulin ratio of Ossimi ewes during experimental period	96
Table (10): Mean (± SE) plasma total cholesterol concentrations (mg/dl) of Ossimi ewes during experimental period	100
Table (11): Mean (± SE) plasma total lipids concentrations (mg/100 ml) of Ossimi ewes during experimental period	104
Table (12): Mean (± SE) plasma glucose concentrations (mg/dl) of Ossimi ewes during experimental period	107
Table (13): Mean (± SE) AST concentrations (U/L) of Ossimi ewes during experimental period	111
Table (14): Mean (± SE) ALT concentrations (U/L) of	112

	Ossimi ewes during experimental period	
Table (15):	Mean (\pm SE) creatinine values (mg/dl) of Ossimi ewes during experimental period	116
Table (16):	Mean (± SE) blood urea nitrogen (mg/100 ml) of Ossimi ewes during experimental period	118
Table (17):	Mean (\pm SE) glutathione (units/gHb) of Ossimi ewes during experimental period	121
Table (18):	Mean (\pm SE) malondialdehyde (m μ) of Ossimi ewes during experimental period	125
Table (19):	Mean (± SE) cortisol (nmol/l) of Ossimi ewes during experimental period	128
Table (20):	Mean (± SE) T3 values (nmol/l) of Ossimi ewes during experimental period	133
Table (21):	Mean (± SE) T4 values (nmol/l) of Ossimi ewes during experimental period	134
Table (22):	Mean (± SE) milk production (g/d) of Ossimi ewes during lactation period	137
Table (23):	Mean (± SE) milk protein (%) of Ossimi ewes during lactation period	41
Table (24):	Mean (± SE) milk fat (%) of Ossimi ewes during lactation period	144
Table (25):	Mean (± SE) milk lactose (%) of Ossimi ewes during lactation period	146
Table (26):	Mean (±SE) peak concentration of progesterone and other reproductive parameters of Ossimi ewes for all groups	150
Table (27):	Mean (± SE) for lamb body weight and mortality rate during suckling period	159

LIST OF FIGURES

Fig. (1): Changes in rectal temperature of Ossimi ewes during experimental period	77
Fig. (2): Changes in respiration rate of Ossimi ewes during experimental period	80
Fig. (3): Changes in pulse rate of Ossimi ewes during experimental period	83
Fig. (4): Changes in hematocrit value of Ossimi ewes during experimental period	87
Fig. (5): Changes in plasma total protein of Ossimi ewes during experimental period	90
Fig. (6): Changes in plasma albumin of Ossimi ewes during experimental period	90
Fig. (7): Changes in plasma globulin of Ossimi ewes during experimental period	94
Fig. (8): Changes in albumin/globulin ratio of Ossimi ewes during experimental period	94
Fig. (9): Changes in plasma total cholesterol of Ossimi ewes during experimental period	99
Fig. (10): Changes in plasma total lipids of Ossimi ewes during experimental period	103
Fig. (11): Changes in plasma glucose of Ossimi ewes during experimental period	106
Fig. (12): Changes in AST of Ossimi ewes during experimental period	110
Fig. (13): Changes in ALT of Ossimi ewes during experimental period	110
Fig. (14): Changes in creatinine of Ossimi ewes during experimental period	114
Fig. (15): Changes in blood urea nitrogen of Ossimi ewes during experimental period	117
Fig. (16): Changes in glutathione of Ossimi ewes during experimental period	120

Fig.	(17):	Changes in malondialdehyde of Ossimi ewes during experimental period	124
Fig.	(18):	Changes in cortisol of Ossimi ewes during experimental period	127
Fig.	(19):	Changes in T3 of Ossimi ewes during experimental period	130
Fig.	(20):	Changes in T4 of Ossimi ewes during experimental period	131
Fig.	(21):	Changes in milk production of Ossimi ewes during lactation period	136
Fig.	(22):	Changes in milk protein of Ossimi ewes during lactation period	140
Fig.	(23):	Changes in milk fat of Ossimi ewes during lactation period	143
Fig.	(24):	Changes in milk lactose of Ossimi ewes during lactation period	145
Fig.	(25):	Serum progesterone levels in Ossimi ewes during estrous cycle for all groups	149
Fig.	(26):	Serum progesterone levels in Ossimi ewes during gestation period for all groups	153