EFFECT OF GESTATIONAL AGE ON VITAMIN-K DEPENDENT COAGULATION FACTORS IN HEALTHY PRETERM NEONATES

Thesis

Submitted for partial fulfillment of Master Degree
In Clinical and Chemical Pathology

By

Shaymaa Ahmed Fouad Fakher El Dien M.B., B.Ch. – 2004

Under Supervision of

Prof. Dr./ Hanaa Mohammad El sayed Afifi

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Dr./ Abeer Attia Saad Eldin

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr/Rania Ali Hassan El-Farrash

Lecturer of Pediatrics

Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2013

First and foremost I would like to thank **ALLAH**Almighty the most graceful for giving me strength to accomplish this work.

My deepest gratitude and profound appreciation to **Professor Dr. Hanaa Mohamad El-Sayed Afifi,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her meticulous observation, her sincere guidance, her support, her patience and endurance despite her multitude of tasks and burden.

I would like as well to have the opportunity to express my respect and gratitude to **Dr. Abeer Attia Sand El-Din**, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her endless patience, untiring help, fruitful advice and supervision throughout the period of this study.

I owe a great dept of gratitude to **Dr. Rania Ali Hassan El-Farrash**, Lecturer of Pediatrics, Faculty of
Medicine, Ain Shams University for her invaluable help and
expertise supervision in the practical part of the study.

Finally I would like to express my deepest and greatest thanks and gratitude to my **Family** for their help, support, patience, endurance, understanding and encouragement to accomplish this work.

LIST OF CONTENTS

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures.	vi
Introduction	1
Aim of the work	3
Review of Literature	
Haemostasis	4
Vitamin-K structure and function	16
Preterm birth	33
Patients and methods	48
Results	63
Discussion	93
Conclusion	99
Recommendation	100
Summary	101
References	104
Arabic summary	

LIST OF ABBREVIATIONS

Abbrev.	Full term
γ	Gamma
ADP	Adenosine diphosphate
AGA	Appropriate gestational age
APC	Activated protein C
APTT	Activated partial thromboplastin time.
AT-III	Antithrombin III TAFI: thrombin-activatable fibrinolysis inhibitor
BMI	Body math index
CS	Cesarean section
D-dimer	Fibrin degradation fragment
Dex	Dexamethazone
EPCR	Endothelial protein C receptor
F	One-way analysis of variance (ANOVA)
FPA	Fibrinopeptides A
FPB	Fibrinopeptides B
FT	Full term
FV	Factor V
FVII	Factor VII
FVIIIa	Activated factor VIII
GA	Gestational age
Gla	Gamma carboxy-glutamic acid
HMW	Kininogen: high molecular weight kininogen
LGA	Large for gestational age
min	Minute
n	Number
ND	Neonatal death

LIST OF ABBREVIATIONS (Cont...)

Abbrev. Full term

NEC Necrotizing interocolitis

NICU Neonatal intensive care unite

NS Non- significant

NVD Normal vaginal delivery

P –value Probability value

P-C/S Protein C and protein S

PIVKA Protein Induced by Vitamin K Absence

PL Phospholipid

PROM Premature rupture of membrane

PS Protein S

PT Prothrombin time

PT Preterm

PT Prothrombin time

PTT Partial thromboplastin time

P-value Probability-value

R Spearman correlation rho RDS Respiratory distress syndrome

S Significant

SD Standard deviation

SGA Small for gestational age

TAFI Thrombin-activated fibrinolytic inhibitor

TF Tissue factor

TFPI Tissue factor pathway inhibitor

TG Thrombin generation

T-M Complex Thrombomodulin Complex

TM Thrombomodulin

tPA Tissue plasminogen activator

LIST OF ABBREVIATIONS (Cont...)

Abbrev.	Full term
TXA2	Thromboxane A2
ULVWF	Ultra-large von Willebrand factor
US	Ultrasound
Vit	Vitamin
VKCFD	Vitamin K-dependent coagulation factor deficiencies
VKD	Vit k dependent
VKDB	Vitamin K deficiency-related bleeding
VLBW	Very low birth weight
vWF	vonWillibrand factor.
wks	Weeks
ZPI	Protein Z-dependent protease inhibitor
ZPI	Protein Z-related protease inhibitor
χ^2	Chi-square test

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Vit- k dependent Coagulation factor related substances	
Table (2):	Causes of prematurity	36
Table (3):	Problems of premaurity	39
Table (4):	The five criteria of the Apgar score	44
Table (5):	Percent of standard coagulation factor.	54
Table (6):	Expected values of control normal plas	sma56
Table (7):	The descriptive data of the 3 preterm g	roups81
Table (8):	The descriptive data of the control ground	up:82
Table (9):	Comparison between fullterm and all p groups:	
Table (10):	Comparison between each preterm and full term group as regards clinicademographic data	al and
Table (11):	Comparison between each preterm and fullterm group as regards the labo data	
Table (12):	Comparison between the 3 studied gro regards the demographic and clinical d	1
Table (13):	Comparison between the 3 studied proups as regards laboratory data:	
Table (14):	Correlation between the studied coagulaters and GA and BW in the progroup:	reterm
	group	

Table (15):	Correlation between the studied factors and	
	PT & PTT in the preterm group:	88

LIST OF TABLES (Cont...)

Tab. No.	Title	Page No.
Table (16):	Factors affecting vit- k de coagulation factors:	1
Table (17):	Descriptive and laboratory data of G	roup I: I
Table (18):	Descriptive and laboratory data of gr	oup II:II
Table (19):	Descriptive and laboratory data of III:	-
Table (20):	Descriptive and laboratory data of group:	77.7

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Mechanism of Haemostasis Invol Blood Vessels, Platelets and Coagulation Process	the
Figure (2):	The Traditional Coagulation Cas which Consists of the Intrinsic Extrinsic Pathways	and
Figure (3):	The Recent Model of Coagulation W Consists of The Primary or Tissue Fa Pathway	actor
Figure (4):	The procoagulant and anticoagulation in K-dependent complexes regulators	and
Figure (5):	The three form of vitamin K	17
Figure (6):	Activation of vit K dependent coagula factors	
Figure (7):	Neonatal fate in the 3 studied groups.	90
Figure (8):	Comparison between control group each preterm group as regards leve coagulation factors.	el of
Figure (9):	Impact of dexamethasone on vir dependent coagulation factors	
Figure (10):	Relation between respiratory distress the studied factors	
Figure (11):	Relation between the studied coagula factors and neonatal fate	

INTRODUCTION

hysiology of neonatal haemostasis is inadequately understood in comparison to the adult model. In healthy preterm neonates the coagulation system is more immature at birth compared to full-terms and gradually evolves toward the mature adult system (*Manco et al.*, 2005).

Moreover, laboratories that work out on large amounts of neonatal samples should establish their own reference values, since results are strongly related to the specific analyzer device and the reagents that are being utilized; it is well known that there are many pitfalls and dilemmas in the evaluation of neonatal haemostasis (*Monagle et al.*, 2010).

The study of coagulation status has particular importance for premature babies who are at risk of serious health problems. Haemorrhagic and/or thrombotic complication may increase morbidity and mortality in this age group (*Andrew et al.*, 1988).

Vitamin- K is required for the insertion of an additional carboxyl group to glutamic acid residues (gamma-carboxylation) on factor II, VII, IX, X, and protein C and S resulting in their activation (*Uzuki et al.*, 2001).

Prematurity is considered the most important risk factor for periventricular-intraventricular hemorrhage (PIVH). The earlier birth occurs, the higher the incidence will be, and consequently the more severe PIVH is expected. In addition, early onset PIVH is also likely to progress into a higher grade (*Gleissner et al.*, 2000).

In preterm neonates, the hepatic microsomal enzymatic systems that are responsible for the activation and synthesis of vitamin K precursor proteins may have been immature and unable to respond adequately (*Kazzi et al.*, 1989).

PIVH occurring in premature infants less than 35 weeks' gestation age is an important cause of mortality and it is associated with long-term morbidity, including neurodevelopmental problems such as hydrocephalus, cerebral palsy, learning disabilities, delayed mental development, severe behavioral problems, etc (*Van and Ouden, 2004*).

AIM OF THE WORK

The aim of this work is to detect effect of gestational age on vitamin -K dependent coagulation factors (II, VII, IX, X) in healthy preterm neonates.

HAEMOSTASIS

aemostasis is defined as the process that provides rapid activation to stop bleeding and exert appropriate inhibition to prevent unwanted clot extension (Segel and Francis, 2001).

The haemostatic system is a complex interaction between the vasculature, cellular components and plasma proteins that interact to maintain haemostasis in the healthy body (*Monagle and Massicotte*, 2011).

The haemostatic system can be further defined as primary, secondary and tertiary haemostasis to better define the interdependent mechanisms that combine maintain haemostasis **Primarv** haemostasis describes the cellular interaction of platelets and the endothelium and the initiation of the platelet plug that is localized to the point of injury at the vessel wall. Secondary haemostasis describes the activation of the coagulation system that is initiated, amplified and prolonged in a sequence of activations of coagulation proteins and regulated by a series of positive and negative feedback mechanisms. Tertiary haemostasis a description of the fibrinolytic system which regulates the breakdown of blood clots as healing vessels regain vascular integrity (Monagle and Massicotte, 2011).