

TENDER TONE TONE CONTROL OF THE PROPERTY OF TH

تبيكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيل

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار في درجة حرارة من 15 - 20 منوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

ثبكة المعلومات الجامعية

"Geophysical Study On The Area Between Latitudes 25° -29° N And Longitudes 31° -33° 30 E, Eastern Desert Of Egypt"

RY

EMAD MOHAMED MAMDOUH MOHAMED M.Sc. THESIS SUBMITTED

For The Ph.D Degree
In (Applied Geophysics)
TO
Department of Geophysic

Department of Geophysics Faculty of Science Ain Shams University

SUPERVISORS

Dr. Ahmed Mohamed Sabry
Professor of Geophysics
Faculty of Science
Ain Shams University

Dr. Mohamed H. Abdel Aal Assis. Prof. of Geophysics Faculty of Education Ain Shams University Dr. Mohamed A. El-Eraqi Assis. Prof. of Geophysics Faculty of Science Zagazig University

0040

1997

13

بِسَ فِي اللهِ الرَّحْمَالِ الرَّحْمَالِ الرَّحِيمِ فَيْ الْحِيمِ اللهِ الرَّحْمَالِ الرَّحْمَالِ الرَّحْمَالِ الرَّحْمَالِ الْحَالِمُ فَقَادُ الْوِتْ وَمَن بُوْتُ الْحِيمَةُ فَقَادُ الْوِتْ وَمَا يَذَّ حَرِّ الْحَالِمُ الْمُلْفِيمِ وَمَن بُوْلُوا الْأَلْبُ الْوَلُوا الْأَلْبُ الْمُلْفِيمِ وَمَن مُوْلِمُ الْمُلْبِ الْمُلْلِقُولُوا الْأَلْبُ الْمُلْفِيمِ وَمَن مُوْلُوا الْأَلْبُ الْمُلْفِيمِ وَمُوْلُوا الْأَلْبُ الْمُلْفِيمِ وَمُوْلُوا الْأَلْبُ الْمُلْفِيمِ وَمُوْلُوا الْأَلْبُ الْمُلْفِيمِ وَمُوْلُوا الْمُلْفِيمِ اللهِ الْمُلْفِيمِ اللهِ الْمُلْفِيمِ وَمُوْلُوا الْمُلْفِيمِ اللّهِ الْمُلْفِيمِ اللّهِ الْمُلْفِيمِ اللّهِ الْمُلْفِيمُ اللّهِ الْمُلْفِيمِ اللّهِ الْمُلْفِيمِ اللّهِ الْمُلْفِيمِ اللّهِ الْمُلْفِيمِ اللّهِ الْمُلْفِيمِ اللّهِ الْمُلْفِيمُ اللّهِ الْمُلْفِيمُ اللّهِ اللّهُ الْمُلْفِيمُ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهُ اللّهِ اللّهِ اللّهِ اللّهِ اللّهُ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهِ اللّهُ اللّهِ اللّهِ اللّهُ اللّهُ اللّهُ اللّهِ اللّهُ اللّهِ اللّهِ اللّهُ اللّهِ اللّهِ اللّهِ اللّهُ اللّهِ اللّهِ اللّهُ اللّهِ اللّهُ اللّهِ اللّهِ اللّهُ اللّهُ اللّهُ اللّهُ اللّهِ اللّهُ الللّهُ اللّهُ اللّهُ الل

صدق الله العظيم

PARPINE OF ANID AND WID WILLS

1

ACKNOWLEDGMENTS

Great appreciation and gratitude are due to Dr. Ahmed Sabry. Prof. of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for his faithful guidance, supervision, encouragement, kind help and valuable advises as well as his keen care during the circular and final revision for the accomplish this work.

The author is highly indebted to Dr. Mohamed Hamed Abdel Aal. Assistant Professor of Geophysics, Biological Sciences and Geology Department, Faculty of Education, Ain Shams University for his supervision, for doing his best in solving all

problems which I'd faced dur

ing the long run

of the research work, the interpretation and guidance in all preparation of this thesis.

The author is deeply indebted to Dr. Mohamed El-Eraqi-Assistant Professor of Geophysics, Geology Department, Faculty of Science, Zagazig University, for continuous help and his encouragement and generous advice in the preparation of this research.

Finally, I would like to express my deepest gratitude and special thanks to my parents and my wife for their continuous encouragement.

Emad

CONTENTS

LIST OF TABLES	
LIST OF FIGURES	
ABSTRACT	i
INTRODUCTION	in N
CHAPTER I	
GENERAL GEOLOGY	
A.1- The basement complex	
B) Structural Setting	
C) Mineralization And Hydrocarbon	14
CHAPTER II	19
DATA PROCESSING AND	
RESULTS OF GRAVITY	19
Methods Of Interpretations	21
A) Two dimensional digital Filtering	21
A.1- Filtering theory	21
A.2- Results of digital filtering	32
B) Structural trend analysis	45
B.1- Theory	45
B.2- Results of structural analysis	46

C) Autocorrelation58
C.1- Theoretical basis of autocorrelation59
D) Spectral Analysis63
D.1- Theoretical basis of the spectral analysis65.
D.2 Results of Fourier's spectral analysis
and autocorrelation67
E) Seismic Gravity Modelling69
E.1- Linear gravity modelling70
E.2- Results of linear gravity modelling71
CHAPTER III84
DATA PROCESSING AND RESULTS
OF SEISMIC DATA84
A) INTRODUCTION84
B) Velocity Analysis And Acoustic Impedance Relations Between the Different Formations In
The Study Area91
B.1- Average and interval velocity maps93
B.1.1- Interpretation of the velocity maps93
C) Reflection Coefficient Analysis108
D) Interpretation Of The Subsurface Structural

D.1- Structural - time contour maps	110
D.2- Structural - depth contour maps	111
E) Subsurface Structural Significant Of S	Seismic
Data	111
E.1 - Introduction	111
E.2. Subsurface structural features	118
CHAPTER IV	126
DISCUSSION AND CONCLUSION	126
CHAPTERV	13:4
REFERENCES	134
ARABIC SUMMARY	

.

. . .

•

•

LIST OF TABLES

Tab. No.	Tab. Title	Page
1	Coefficients in the first quadrant of 8.0	27
	unit regional filter (Coefficients in the	
	table are actual coefficients multiplied by	
	106).	
2	Coefficients in the first quadrant of 16	28
	unit regional filter (Coefficient in the	
	table are actual coefficients multiplied by	
	10 ⁶).	
3.	Coefficients in the first quadrant of 21.3	29
	unit regional filter (Coefficient in the	
	table are actual coefficients multiplied by	
	106).	ë .
4	Outputs of spectral analysis and	-69 ≛
	autocorrelation computations.	
5	The TVF parameters, FBS parameters	85
	and display of studied seismic lines.	
6	Field parameters of seismic lines.	90
7.	The depth velocity analysis for different	105
	formations in Shukier-4 well.	<u></u>

Tab. No.	Tab. Title	Page
8	The depth velocity analysis for different	
	formations in El-Safa-1 well.	
9	The depth velocity analysis for different	106
	formations in El-Safa-2 well.	
10	The depth velocity analysis for different	107
	formations in El-Safa-3 well.	ا د خشه ا
11	The depth velocity analysis for different	107
	formations in W-Dara -1 well.	
12	Distribution of the fault trends obtained	122
	from the reflection seismic data at top	
	Kareem formation. ,	
13	Distribution of the fault trends obtained	122
	from the reflection seismic data at top	
	South Gharib formation.	. :
14	Distribution of the fault trends obtained	12 3
	from the reflection seismic data at top	•
	Zeit formation.	· .

ţ

LIST OF FIGURES

[]	Fig. No.	Fig. Title	Page
	i	Location map of the study area	3
	2	Geological map (after Conoco and EGPC,	5
		1987)	
	3	Bouguer gravity map (after EGPC, 1984).	20
	4	Gravity map with 8-unit regional filter	33
	5	Gravity map with 16-unit regional filter.	· 34
	6	Gravity map with 21.3 unit regional filter.	- 35
	٧,7	Gravity map with 8-unit residual filter.	38
	8	Gravity map with 16-unit residual filter.	39
	. 9	Gravity map with 21.3 unit residual filter.	40
	10	Gravity map with 16-8 unit band pass	42
		filter.	
	11	Gravity map with 21.3 - 16 unit band pass	43
	6	filter.	7
	12	Gravity map with 21.3-8 unit band pass	44
۱		filter.	
	13	Rose diagram of the major tectonic trends	48
	. 19	at the northern, central and southern parts	
		of the area.	
	1. 14	Tectonic trends deduced from the Bouguer	49
		gravity map.	