Effect of Magnesium Sulfate on Doppler Parameters of Fetal Umbilical and Middle Cerebral Arteries in Women with Severe Preeclampsia

Thesis

Submitted for partial fulfillment of Master Degree in Obstetrics and Gynecology

By Nada El Toukhy Mohamed

M.B., B.CH.2008 Faculty of Medicine Ain Shams University

Supervisors

Prof. Mahmoud Aly Ahmed El Shourbagy

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Assist. Prof. Tamer Ahmed Al Refaie

Assistant professor of Obstetrics and Gynecology Faculty of Medicine - Ain shams University

Dr. Mohammed Ahmed Faris

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Ain shams University

2016

سورة البقرة الآية: ٣٢

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my sincere gratitude to **Prof.**Mahmoud Aly Ahmed El Shourbagy, Professor of Obstetrics and Gynecology, Faculty of Medicine – Ain Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, guidance and support.

My deep gratitude goes to **Prof. Tamer Ahmed Al Refaie,** Assistant Professor of Obstetrics and Gynecology,
Faculty of Medicine – Ain Shams University, for his invaluable
efforts and tireless guidance and meticulous supervision
throughout this work.

I wish also to express my gratitude to **Dr. Mohammed**Ahmed Faris, Lecturer of Obstetrics and Gynecology, Faculty of Medicine – Ain Shams University, for his great effort, kind advice, support and encouragement throughout the whole work.

Last but not least, I like to thank my beloved parents and brothers for their persistent assistance, kind care, help and encouragement.

🖎 Nada Al-Toukhy

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Protocol	•••••
Introduction	1
Aim of the Work	4
Review of Literature	
Preeclampsia	5
MgSO4	17
MgSO4 in Preeclampsia	25
Doppler	29
Patients and Methods	38
Results	47
Discussion	63
Summary	69
Conclusion	
Recommendations	73
References	74
Arabic Summary	

List of Abbreviations

Abbr.	Citle
ACOG	: American College of Obstetricians and Gynecologists
AEDF	: Absent end diastolic flow
APA\$: Antiphospholipid antibody syndrome
AST	: Aspartate aminotransferase test
BMI	: Body mass index
BP	: Blood pressure
CBF	: Cerebral blood flow
CBFV	: Cerebral blood flow
CI	: Confidence interval
CPR	: Cerebroplacental ratio
CS	: Cesarean section
CSF	: Cerebrospinal fluid
CT	: Computed tomography
dl	: Deci-liter
DM	: Diabetes milletus
DV	: Ductus venosus
EAAs	: Excitatory amino acids
EDV	: End diastolic volume
FGR	: Fetal growth restriction
FHR	: Fetal heart rate
g	: Gram
GOPEC	: The Genetics of Preeclampsia Collaborative
h	: Hour

HELLP: Hemolytic anemia, elevated liver enzymes, low platelets.

HLA: Human leukocyte antigen

HTN: Hypertension

Hz: Hertz

IM : Intramuscular

IU: International unit

IUFD : Intrauterine fetal death

IUGR : Intrauterine growth retardation

IV : Intravenous

LDL : Low density lipoprotein

LOX 1 : Lectin-like oxidized low-denisty lipoprotein receptor 1

MCA : Middle cerebral artery

Mg : Milligram

MgSO4 : Magnesium sulfate

MHz : Mega Hertz

mmHg : Millimeter mercury

Mmol : Millimole

MRI : Magnetic resonance imaging

NHBPEP: National High Blood Pressure Education Program

NICE : National Institute of Clinical Excellence

NK : Natural killer

NMDA : *N*-methyl-d-aspartate

NO : Nitric oxide

PI : Pulsatility index

PIH : Pregnancy-induced hypertension

PIV : Pulsatility index for viens

PIGF : Placental growth factor

PPT : Partial thromboplastin time

PSV: Peak systolic velocity

PT : Prothrombin time

PVIV : Peak velocity index for viens

RADAR : Radio detection and ranging

REDF : Reversal of end diastolic flow

RI : Resistibility index

RUPP : Reduced uterine perfusion pressure

S\D : Systolic\diastolic ratio

sEng : Soluble endoglin

sFlt-1 : Soluble fms-like tyrosine kinase I receptor

SLE : Systemic lupus erythrematosis

SONAR : Sound navigation and ranging

TAMV: Time averaged mean velocity

TCD : Transcranial Doppler

TGF-beta: Transforming growth factor- beta

TRAP: Twin reversed arterial perfusion

TTTTS: Twin to twin transfusion syndrome

U**L** : Unit per liter

UA : Umbilical artery

VEGF : Vascular endothelial growth factor

VOCC : Voltage-operated calcium channels

WHO: World Health Organization

List of Tables

Eable No	v. Citle	Page No.
Table (1):	Risk factors for pre-eclampsia	7
Table (2):	Management of pregnancy we eclampsia	•
Table (3):	Characteristics of the study popul	lation 48
Table (4):	Blood pressure and degree of alb in the study population	
Table (5):	Mode of delivery and neonatal of in the study population	
Table (6):	Fetal Middle Cerebral Artery before and 20 min after Mgso4 in	
Table (7):	UA Doppler indices before a MgSO ₄	

List of Figures

Figure Na	v. Eitle Page No.
Figure (1): Figure (2):	Vascular effects of magnesium sulphate
Figure (3):	Kano State Eclampsia Protocol
Figure (4):	Abnormal development of the umbilical arteries
Figure (5):	Flow velocity indices
Figure (6):	Color Doppler examination of the circle of Willis
Figure (7):	Chart showing difference between pre and post MgSO4 measurement of MCA RI. Error bars 95% CI
Figure (8):	Chart showing difference between pre and post MgSO4 measurement of MCA PI. Error bars 95% CI
Figure (9):	Chart showing difference between pre and post MgSO4 measurement of MCA PSV. Error bars 95% CI
Figure (10):	Chart showing difference between pre and post MgSO4 measurement of MCA EDV. Error bars 95% CI
Figure (11):	Chart showing difference between pre and post MgSO4 measurement of MCA S/D ratio. Error bars 95% CI
Figure (12):	Chart showing difference between pre and post MgSO4 measurement of UA RI. Error bars 95% CI

List of Figures

Figure (13):	Chart showing difference between pre and post MgSO4 measurement of UA PI. Error bars 95% CI	59
Figure (14):	Chart showing difference between pre and post MgSO4 measurement of UA PSV. Error bars 95% CI	60
Figure (15):	Chart showing difference between pre and post MgSO4 measurement of UA EDV. Error bars 95% CI	61
Figure (16):	Chart showing difference between pre and post MgSO4 measurement of UA S/D ratio. Error bars 95% CI	. 62

Introduction

re-eclampcia is defined as new hypertension presenting after 20 weeks with significant proteinuria which in turn is defined as urinary protein: creatinine ratio is greater than 30 mg/mmol or a validated 24-hour urine collection result shows greater than 300 mg protein ((NICE) clinical guidelines, 2010).

There is no single reliable, cost-effective screening test for preeclampsia, and there are no well-established measures for primary prevention. Management before the onset of labor includes close monitoring of maternal and fetal status. Management during delivery includes seizure prophylaxis with magnesium sulfate and, if necessary, medical management of hypertension. Delivery remains the ultimate treatment. Access to prenatal care, early detection of the disorder, careful monitoring, and appropriate management are crucial elements in the prevention of preeclampsia-related complications (Lana et al., 2004).

Magnesium is a potent vasodilator of uterine and mesenteric arteries as well as the aorta. In vascular smooth muscle, magnesium competes with calcium for binding sites, in this case for voltage-operated calcium channels (VOCC). Decreased calcium channel activity lowers intracellular calcium, resulting in relaxation and vasodilation. In the endothelium, magnesium increases production of prostaglandin

 I_2 which in turn decreases platelet aggregation. Magnesium also increases NO production causing vasodilation (**Euser et al.**, **2009**).

Magnesium sulfate (MgSO₄) is used in women with severe preeclamptic toxemia for neuroprotection from seizures and can help prevent serious complications. The exact mechanism by which magnesium sulphate exerts a protective role in the prevention of neuronal injury in the fetal brain has not been elucidated. However there is evidence for various effects of magnesium sulphate, some or all of which likely play a role in the neuroprotective effect observed (Marret et al., 2007).

Doppler ultrasound is a useful tool for studying pathophysiological mechanisms that can affect the fetal hemodynamic status. Assessing the changes in the arteries with Doppler ultrasound can show the adaptation of fetus to the situation. An increase in umbilical artery resistance shows as a decrease in perfusion. If the situation continues, RI in the middle cerebral artery will decrease (**Mihu et al., 2011**).

There were many studies that were performed to evaluate the effect of magnesium sulfate intravenous administration on Doppler indices of middle cerebral artery and umbilical artery on women with severe preeclampsia. In 2016, (Maged et al., 2016) proved that intravenous

magnesium sulfate administration in pregnant women with severe preeclampsia resulted in a decrease in fetal middle cerebral artery and umbilical artery Doppler indices with reduced resistance to blood flow in these vessels.

The purpose of this study was to evaluate the effect of MgSO₄ in severe preeclampsia on fetal middle cerebral artery and umbilical artery using Doppler parameters.

Aim of the Work

To assess the effect of MgSO₄ before and after its administration on Doppler ultrasound parameters of fetal umbilical artery (UA) and middle cerebral arteries (MCA) in pregnant women with severe pre-eclampcia.

Preeclampsia

pregnancies and cover a spectrum of conditions, namely preeclampsia, eclampsia, and chronic and gestational hypertension. Pre-eclampsia, a human-pregnancy-specific disease defined as new hypertension presenting after 20 weeks with significant proteinuria which in turn is defined as urinary protein: creatinine ratio is greater than 30 mg/mmol or a validated 24-hour urine collection result shows greater than 300 mg protein (NICE clinical guidelines 2010).

In 2013, the American College of Obstetricians and Gynecologists removed proteinuria as an essential criterion for diagnosis of preeclampsia with severe features. They also removed massive proteinuria (5 grams/24 hours) and fetal growth restriction as possible features of severe disease because massive proteinuria has a poor correlation with outcome and fetal growth restriction is managed similarly whether or not preeclampsia is diagnosed (American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy 2013). Oliguria was also removed as a characteristic of severe disease.