Evaluation of the Antimicrobial effect of Gaseous Ozone, Ozonated Water and Ozonated Sodium Hypochlorite on the Enterococcus Faecalis of Human Root Canals

A Thesis submitted to the Faculty of Oral and Dental Medicine, Cairo University, in partial fulfillment of the requirements for Doctors Degree in dental surgery (Endodontics).

By

Yousra Mohamed Nashaat Ezz-Eldin B.D.S (2001) Cairo University

Master Degree of Endodontics
Faculty of Oral and Dental Medicine
Cairo University
2007

المشرفون

الاستاذ الدكتور/ ماجد نجم

استاذ علاج الجذور كلية طب الفم و الاسنان جامعة القاهرة

الاستاذة الدكتورة / راندا البغدادى

استاذ علاج الجذور كلية طب الفم و الاسنان جامعة القاهرة

تقييم تأثير الاوزون الغازى الماء الاوزونى وهيبوكلوريت الصوديم الاوزونى المضاد للبكتيريا على الانتيروكوكس فيكاليس الموجود بقنوات الجذور البشرية

رساله مقدمة الى كلية طب الفم و الاسنان- جامعة القاهرة توطئه للحصول على درجة الدكتوراة تخصص علاج الجذور مقدمة الرسالة

ط / يسرا محمد نشأت عز الدين بكالوريوس طب و جراحة الفم و الاسنان جامعة القاهرة (2010)

تقييم تأثير الاوزون الغازى و الماء الاوزونى و هيبوكلوريت الصوديوم الاوزونى المضاد للبكتيريا على الانتيروكوكس فيكاليس الموجود بقنوات الجذور البشرية

اجريت دراسة مكونة من جزئين لتقييم تأثير الاوزون الغازى و الماء الاوزونسي و هيبوكلوريت الصوديوم الاوزوني المضاد للبكتيريا على الانتيروكوكس فيكاليس الموجودة بقنوات الجذور البشرية.

الجزء الاول (الدراسة المعملية):

تم استخدام عدد 60 من الاسنان الدائمه ذات القناة الواحدة و تم تقسيم هذة الاسنان الى ثلاثة مجموعات بعد وضع الانتيروكوكس فيكاليس بداخل قنوات الجذور و تركه بداخلها لمده 48 ساعه. كل مجموعه احتوت على عدد 20 من الاسنان و تمت معالجة الاسنان كما يلى:

<u>1 - المجموعة الاولى :</u> تمت معالجة الاسنان عن طريق توصيل الغاز الاوزونى داخل قنوات الجذور لمده 120 ثانيه من جهاز الهيل اوزون.

2- المجموعة الثانية: تم غسل قنوات الجذور باستخدام 4مجم/ لتر من الماء الاوزوني لمده 10 دقايق.

3- المجموعة الثالثة: تم معالجه الاسنان باستخدام 5.25% هيبوكلوريت الصوديوم لغسل قنوات الجذور لمده دقيقتين.

ثم اخذت العينات من داخل قنوات الجذور و تم زرعها على اطباق المولر هينتون اجارا لمده 48 ساعه وتم حصر عدد الانتيروكوكس الموجودة بعد تطبيق العلاج لكل مجموعة.

الجزء الثاني (دراسة بشرية):

تم استخدام عدد 32 من المرضى ذوى الاسنان الاماميه المحاطة بالتهاب حول الجذور.

بعد فتح الاسنان و الوصول الى قنوات الجذور اخذت عينات من الجذور قبل البدء بمعالجتها ثم زرعت العينات لتحديد عدد البكتيريا الموجودة بكل قناة جذر قبل العلاج.

قسمت الاسنان الى اربع مجموعات كما يلى:

1-المجموعة الاولى: عولجت الاسنان بمحلول ملح بين استخدام كل اداة وما يليها وتم استخدام غاز الازون لمدة 120ثانية .

2-المجموعة الثانية: تم غسل قنوات الجذور اثناء عملية تحضير الاسنان باستخدام 4مجم/لتر ماء ازونى لمده 30ثانية بين كل أداة وما يليها.

3- المجموعة الثالثة: تم غسل قنوات الجذور اثناء تحضير الاسنان باستخدام 0.5% هيوكلوريت الصوديوم لمده 30ثانية بين كل أداة ومايليها.

4-المجموعة الرابعة: تم غسل قنوات الجذور اثناء عملية تحضير الاسنان باستخدام 0.5% هيوكلوريت الصوديوم لمدة 30 ثانية بين كل أداة ومايليها ثم تعرضت قنوات الجذور للغاز الاوزوني من جهاز الهيل اوزون لمدة 10ثوان.

ثم تم تجميع العينات من داخل كل الجذور ووضعت بداخل انابيب الاختبار من اجل تخفيفها و وضعها على اطباق المولر هينتون اجار لمدة 48 ساعة وتم حصر عدد الانتيروكوكس فيكاليس الموجودة بعد تطبيق العلاج لجميع الاسنان.

اشارت النتائج المستنتجه من كل من الجزء العملى و البشرى الى:

- 1- وجود فروق احصاءية قبل وبعد تطبيق كل نوع من العلاج مما يدل على تاثيرة الإيجابي.
- 2- تميز الاوزون بشكلية الغاز الازونى والماء الازونى بتاثيرهم المضاد للانتيروكوكس فيكا ليس وقدرتة الملحوظة في القضاء عليها داخل قنوات الجذور.
- 3- رغم تميز الغاز الاوزونى على الماء الاوزونى فى التاثير المضاد للانتير كوكس فيكا ليس لا توجد فروق احصاءيه بينهما.
- 4- قوة تأثير التركيز العالى (5.25%) من هيبوكلوريت الصوديم ضد الانتيركوكس فيكا ليس وضعف تاثير التركيز القليل (5.0%) ضد البكتريا ومع ذلك فانه لاينصح باستخدام التركيز العالى منه نظرا لتاثيره الضار على العاج الادمى.

5- وجود تأثير ملحوظ مضاد للبكتريا لهيبوكلوريت الصوديم الاوزوني.

Supervisors

Prof. Dr. Maged M. Negm

Professor of Endodontics

Faculty of Oral and Dental Medicine
Cairo University

Prof. Dr. Randa El Boghdady.

Professor of Endodontics

Faculty of Oral and Dental Medicine
Cairo University

Dedication

This work is dedicated to my family; my parents and my brother, the kindest people in the whole world. No words can describe my gratitude to them.

"Thank you very much, you really mean everything to me, may God bless you"

ABSTRACT

The aim of this study was to evaluate the antimicrobial effect of gaseous ozone, ozonated water and ozonated sodium hypochlorite on the Enterococcus faecalis of human root canals. It was divided into two parts; in vitro and in vivo study. Sixty extracted human anterior maxillary teeth were included in the in vitro part, where they were prepared, incubated with E.faecalis for 48 hours and then divided into three groups; the first was treated with application of the ozone gas for 120 seconds while the second was treated with irrigation using 4mg/L ozonated water for 10 mins and the third was treated by 5.25% NaOCI irrigation for 2 mins. Then samples were collected from each tooth for calculation of bactertial count after the application of the treatment. The in vivo part included 32 patients with apical radioluciencies related to upper anterior teeth, pre chemomechanical samples were collected before the preparation then the teeth were divided into four groups; the first was treated by saline irrigation between each instrument and the other during the cleaning and shaping procedure followed by the application of ozone gas for 120 sec, the second group was treated with 4mg/L ozonated water irrigation between each instrument and the other during the preparation, the third group was treated by 0.5% NaOCI irrigation between each instrument and the other followed by 10 sec ozone gas application after finishing the procedure of cleaning and shaping. The results of the in vitro study showed that 5.25% NaOCI achieved the highest percentage of bacterial count reduction with a statistically significant difference than the other groups followed by the ozone gas group then the ozonated water group and there was no statistically significant difference between the last two groups. While the in vivo study concluded the significant antibacterial effect of the ozonated sodium hypochlorite solution that showed the highest percentage of bacterial count reduction followed by the ozone gas and the ozonated water groups with no statistically significant difference between them, while the 0.5% NaOCI gave the lowest antibacterial effect against E. faecalis.

Key words: Enterococcus faecalis, Ozone gas, ozonated water, ozonated sodium hypochlorite.

Acknowledgements

My deepest gratitude, thanks, appreciation and respect go to <u>Prof.</u>

<u>Dr. Maged M. Negm</u>. Professor of Endodontics, faculty of Oral and Dental Medicine, Cairo University, for his sincerity, unsurpassed kindness, thoughtful guidance, extraordinary decency, unlimited help, care and support.

Countless thanks to <u>Prof. Dr. Randa El Boghdady</u>. Professor of Endodontics, faculty of Oral and Dental Medicine, Cairo University, for her friendly spirit, great help and care.

.

Many thanks to <u>Dr. Salwa Youssef</u>. Lecturer in Micrbiology, faculty of Oral and Dental Medicine, October 6th University, for her care, concern, valuable cooperation and helpful remarks

I would also like to thank Prof. <u>Dr. Yehia M. El-Boghdady</u>. Dean of faculty of Oral and Dental Medicine, October 6th University, for his valuable encouragement and support.

Contents

	Page
Introduction	1
Review of Literature	2
1. Sodium hypochlorite	10
2. Ozone	20
A.Ozone Gas and Ozonated Water	29
B.Ozonated NaOCl	38
Aim of the Study	40
Materials and Methods	41
Results	60
Discussion	73
Summary and Conclusion	83
References	88
Arabic Summary	

List of Figures

	Page
Fig. 1. The HealOzone unit.	42
Fig. 2. HealOzone unit structure	44
Fig. 3. HealOzone unit.	45
Fig. 4. Air drier and filter	45
Fig. 5. Five differently sized silicone cups	46
Fig. 6. Tips for ozone gas delivery inside the root canal	46
Fig. 7. Sterile micropipettes	50
Fig. 8. Delivery of the ozone gas inside the prepared root canal lumen	51
Fig. 9. A diagram showing the insertion of the ozone cannula into the prepared	
root canal	52
Fig. 10. A diagram showing the endodontic ozone treatment with complete seal	52
Fig. 11. Serial bacterial dilution	53
Fig. 12. Muller Hinton agar plates.	54
Fig. 13. Incubator used for plates storage	54
Fig. 14. Choosing the appropriate silicone cup size.	57
Fig. 15 Delivery of ozone gas inside the canal lumen after the application of	
rubber dam	57
Fig. 16. Tightly sealed silicone cup applied on an upper canine	58
Fig. 17. Application of ozone gas	58
Fig. 18. Line chart representing the reduction in bacterial counts within each	
group after application of treatment	62
Fig. 19. Bar chart representing the % reduction in bacterial counts in the three	
groups	64
Fig. 20. Line chart representing the reduction in bacterial count within each	_
group.	68
Fig. 21. Bar chart representing the % reduction in bacterial counts in the four	
groups	72

List of Tables

	Page
Table. 1. Comparison of bacterial counts before and after treatment within each	
group (in vitro study)	61
Table. 2. Comparison of the percentage reduction in bacterial count in the three	
groups (in vitro study)	63
Table. 3 A comparison of bacterial counts before and after the preparation and	
application of different treatment methods within each group (in vivo	
study)	67
Table. 4. Overall comparison of percentage reduction in bacterial counts in all	
groups (in vivo study)	71

Introduction

Obtaining a root canal system free of irritants is a major goal of root canal treatment.

Root canal irrigants and disinfecting chemicals have been proposed to enhance the removal of vital and non vital tissue remnants, tissue breakdown products, bacteria and bacterial by products.

Elimination of endodontic infection is quite different from most other sites in the human body. This is mainly because of the special anatomy and physiology of the tooth and of the root canal. Among the most frequently isolated species in teeth with apical periodontitis is the Entercoccus faecalis but several other facultative and other anaerobic bacteria are also often isolated.

A number of different approaches to eliminate infection from root canal systems have been proposed including; laser technology, irrigation with electrochemically activated water and application of ozone.

Ozone is a powerful oxidizing agent and has been used in water industry for many years to kill bacteria.

Ozonated water has been also proven to be useful in dentistry.

Ozonation of sodium hypochlorite is one of the most recently introduced techniques used in root canal disinfection. Ozone-activated sodium hypochlorite showed higher antibacterial activity more than its unactivated form.

Review of Literature

In clinical practice, instrumentation of the root canals within the affected tooth is usually the most time consuming and technically demanding element of the treatment. The technical success of treatment is based on optimized root canal instrumentation.

(1) Sundqvist demonstrated & that mechanical Bystrom instrumentation and irrigation with saline alone significantly reduced the number of bacteria but that bacteria remained in the canal systems in half the cases. They concluded that the supporting action of a disinfectant for elimination is necessary successful ofmicroorganisms from root canals.

Cevk et al.⁽²⁾ found that mechanical cleansing in root canals in teeth with immature root with the instruments then available was inadequate. This inadequacy may not be compensated for by the use of even a concentrated solution of NaOCl.

Dalto et al.⁽³⁾ compared the intracanal bacterial reduction in teeth instrumented either with .04 tapered nickel-titanium rotary instrumentation or with stainless-steel K-file step back technique with saline irrigation.