The Value of Diffusion Weighted MRI in the Detection and Diagnosis of Breast Mass Lesions in Correlation with Dual Energy Contrast Enhanced Digital Mammography

Thesis

Submitted for Partial Fulfillment of MSc . Degree in Radiology

Presented by

Radwa Essam Mostafa Abdel - Razik

(M. B.B.Ch, National Cancer Institute, Cairo University)

Supervised by

Prof.Dr. Maha Hussein Helal

Prof.Dr. Rasha Mohammed Kamal

Professor of Radiology

National Cancer Institute

Cairo University

Professor of Radiology

Faculty of Medicine

Cairo University

Assist. Prof. Eman Gouda

Assistant Professor of Pathology

National Cancer Institute

Cairo University

Acknowledgement

Praise is to ALLAH who exalted in knowledge whom he wills but above those who have knowledge there is one more knowing; the cherisher and sustainer of all what is in heaven and what is on earth. To HIM is the goal and to him is the return of all.

I would like to express my deepest gratitude to **Professor Dr. Maha Helal**, Professor of Radiology, National Cancer Institute, Cairo University to whom I am deeply in debited. Her masterful teaching, continuous support, critical insight, enthusiastic encouragement and invaluable advice and criticism on every level are the cornerstones of this work. To me she is an idol. She is truly an example to follow.

Words could not express my great appreciation and respect to **Professor Dr. Rasha Kamal**Professor of Radiology, , Faculty of Medicine , Cairo-University, for her kindness, patience,
consideration and precious assistance. and concern throughout this work, providing this
thesis with her scientific experience and constructive supervision.

I am also very grateful to **Dr. Eman Gouda** Assistant Professor of Pathology Cairo-University, for her guidance and care that allowed the suitable performance of this work.

I am deeply thankful to the women's imaging unit and MRI unit operators at the National Cancer Institute, for their cooperation

Iam also deeply grateful for my husband **Dr. Ahmed Al Sayed** for his assistance, support and patience

Last, but not least, I would like to express my respect, appreciation and thanks to my family, especially my mother and my sister the most precious thing in my life for their understanding, patience and encouragement.

Abstract

Breast cancer is the most common malignant tumor among women.

The purpose of all diagnostic modalities in breast cancer is early detection

and proper diagnosis, which has its major impact on further management

and prognosis.

Dual Energy CEDM proved to have a higher diagnostic accuracy for the

detection of breast carcinoma compared with mammography alone and with

mammography interpreted in association with ultrasound

DW MRI in the breast is a new imaging technique. It has the advantage

that It is simple, fast and non invasive with no need to use contrast media

and it provides information that reflects tissue cellularity which can be used

in diagnosis and evaluation of breast lesions.

In our study using combined qualitative analysis of DWIs and quantitative

analysis of ADC values we concluded that results of DW MRI are

approaching that of contrast enhanced MRI and better than Dual- energy

CEDM in diagnosis of breast lesions

DW MR imaging can be used as a reasonable alternative technique to

contrast-enhanced imaging

Key words: MR- ADC- DWI- CEDM- Mammography- Breast Mass

CONTENTS

Introduction	1
Chapter 1: anatomy of the breast	5
Chapter 2: pathology of breast lesions	19
Chapter 3: contrast enhanced digital mammography of the breast	39
CHAPTER 4: INTERPRETATION OF MRI BREAST LESIONS	49
Chapter 5: diffusion weighted imaging of the breast	75
Chapter 6: patients and methods	106
Chapter 7: results	113
Chapter 8: case presentation	135
Chapter 9: discussion	175
SUMMARY AND CONCLUSION	187
REFRENCES	190
ARABIC SUMMARY	

LIST OF ABBREVIATIONS:

ACR American College of Radiology

ADC absolute diffusion coefficient

AEC automatic exposure control

AGD average glandular dose

BI-RADS Breast Imaging Reporting and Data System

CAD Computer Aided Detection

CC cranio caudal

CEDM contrast-enhanced digital mammography

DCE-MRI dynamic contrast enhanced magnetic resonance imaging

DCIS ductal Carcinoma in situ

DWI diffusion weighted image

FOV Field of view

GFR glomerular filtration rate

IDC INVASIVE DUCT CARCINOMA

LCIS lobular Carcinoma in situ

MLO medio lateral oblique

MRI Magnetic resonance imaging

NCI National Cancer institute

RF radio frequency

ROC Receiver Operating Characteristic Curve

ROI region of interest

SI-Time signal intensity - time curve

SNR Signal to noise ratio

STIR short T1 inversion recovery

TDLU Terminal ductal lobular unite

TE Time of echo

TNM Tumor, nodes, metastases

TR time of repitition

SPAIR spectral attenuated inversion recovery

LIST OF FIGURES

Figure 1.1: Schematic of Sagittal View of the Breast	6
Figure 1.2: Breast profile	7
FIGURE 1.3: BIRADS DENSITY CLASSIFICATION IN FOUR CATEGORIES	10
FIGURE 1.4: NIPPLES ON MRI	11
FIGURE 1.5: MEDIAL BREAST WITH PECTORALIS MAJOR MUSCLE ON MRI	11
FIGURE 1.6: MEDIAL BREAST WITH PECTORALIS MAJOR MUSCLE ON MRI	11
FIGURE 1.7: LATERAL BREAST WITH PECTORALIS MINOR MUSCLE ON MRI	11
Figure 1.8: Anatomy of the breast on MR imaging with predominant fatty tissue	12
Figure 1.9: distribution of tissue density on MRI	13
FIGURE 1.10: LATERAL THORACIC ARTERY AND BRANCHES	14
FIGURE 1.11: INTERNAL MAMMARY ARTERY ANTERIOR TO THE HEART	
FIGURE 1.12: BLOOD SUPPLY OF THE BREAST	14
FIGURE 1.13: LYMPHATIC DRAINAGE OF THE BREAST	16
FIGURE 1.14: MULTIPLE NORMAL APPEARING LEVEL I AXILLARY LYMPH NODES	17
FIGURE 1.15: LYMPH NODE IN THE POSTERIOR MEDIAL BREAST	17
Figure 1.16: Benign Lymph node with vessel radiating to Hilum	17
FIGURE 1.17: NERVE SUPPLY OF THE BREAST	18
FIGURE 2.1: MICROSCOPIC AND GROSS PICTURES OF FIBROADENOMA	24
FIGURE 2.2: INTRADUCTAL CARCINOMA, COMEDO TYPE	28
FIGURE 2.3: WELL-DIFFERENTIATED DUCTAL CARCINOMA IN SITU.	28
FIGURE 2.4: LOBULAR INTRAEPITHELIAL NEOPLASIA	30
FIGURE 2.5:INVASIVE DUCTAL CARCINOMA	31
FIGURE 2.6: INVASIVE LOBULAR CARCINOMA	32
FIGURE 2.7: MUCINOUS CARCINOMA, HYPOCELLULAR TYPE	33
FIGURE 2.8: MICROSCOPIC PICTURE OF PAGET'S DISEASE	35
FIGURE 3.1: DUAL ENERGY PHANTOM IMAGE OF AN IODINE-BASED CONTRAST AGENT	45
FIGURE 3.2. SCHEMA OF THE TECHNIQUE OF DUAL-ENERGY CEDM EXAMINATION	48

FIGURE 4.1: ALGORITHM FOR INTERPRETATION	P. 53
FIGURE 4.2: FOCI OF ENHANCEMENT IN BREAST MRI	P. 55
FIGURE 4.3: SHAPE OF MASSES ON MRI	P. 56
FIGURE 4.4: JUVENILE FIBROADENOMA	P. 57
FIGURE 4.5: LOBULATED MASS LESION-LOBULAR INVASIVE CARCINOMA	P. 57
FIGURE 4.6: EPIDERMAL INCLUSION CYST.	P. 57
FIGURE 4.7: OVAL SMOOTH LYMPH NODE	P. 58
FIGURE 4.8: SMALL ROUND SMOOTH CARCINOMA	P. 58
FIGURE 4.9: ROUND MASS WITH SPICULATED MARGINS	P. 58
FIGURE 4.10: FAT-CONTAINING HAMARTOMA	P. 59
FIGURE 4.11: HAMARTOMA	P. 59
FIGURE 4.12: EXAMPLES OF CYSTS.	P. 60
FIGURE 4.13: FIBROADENOMA (LEFT) AND A COLLOID CARCINOMA (RIGHT).	P. 60
FIGURE 4.14: HOMOGENEOUS ENHANCEMENT	P. 61
FIGURE 4.15: INVASIVE LOBULAR CARCINOMA WITH HETEROGENOUS ENHANCEMENT	P. 62
FIGURE 4.16-4.18: RIM ENHANCEMENT	P. 62
FIGURE 4.19: PHYLLOIDES TUMOUR	P. 63
FIGURE 4.20: ENHANCING INTERNAL SEPTATIONS.	P. 63
FIGURE 4.21: CENTRAL ENHANCEMENT	P. 63
FIGURE 4.22: KINETIC CURVE ASSESSMENT	P. 64
FIGURE 4.23: CAD WITH LARGE AREA OF RED SUPERIMPOSED ON THE BREAST LESION	P. 66
FIGURE 4.24: CAD WITH AREAS OF TYPE 3 WASHOUT IN LARGE INVASIVE DUCTAL CARCINOMA	P.67
FIGURE 4.25: FOCAL DCIS	P. 68
FIGURE 4.26: DUCTAL ENHANCEMENT IN DCIS	P. 68
FIGURE 4.27: MASS AS WELL AS AREAS OF LINEAR NON-MASS ENHANCEMENT (DUCTAL)	P. 68
FIGURE 4.28, 4.29: LINEAR ENHANCEMENT IN SCARS	P. 69
FIGURE 4.30: SEGMENTAL ENHANCEMENT	P. 69
FIGURE 4.31: REGIONAL ENHANCEMENT IN A CASE OF DCIS	P. 69
FIGURE 4.32: DIFFUSE ENHANCEMENT.	P. 70
FIGURE 4.33: PUNCTATE ENHANCEMENT IN A HAMARTOMA WITH FIBROCYSTIC CHANGE	P. 71
FIGURE 4.34: STIPPLED ENHANCEMENT	P. 71

FIGURE 4.35: CLUMPED ENHANCEMENT IN THREE PATIENTS REPRESENTING DCIS	P.71
FIGURE 4.36: NON-MASS LIKE ENHANCEMENTS	P. 72
FIGURE 4.37: NIPPLE INVASION	P. 73
FIGURE 4.38: DIFFUSE SKIN THICKENING WITH ENHANCEMENT. INFLAMMATORY BREAST CARCINOMA	P. 73
FIGURE 4.39: LOCALLY ADVANCED BREAST CARCINOMA WITH AXILLARY ADENOPATHY	P. 73
Figure 4.40: Hematoma	P. 74
FIGURE 4.42: CHEST WALL INVASION	P. 74
FIGURE 5.1: WATER MOLCULES MOVEMENT IN TISSUES	P. 77
FIGURE 5.2: PULSE SEQUENCE OF SINGLE-SHOT SPIN-ECHO ECHOPLANAR DIFFUSION-WEIGHTED IMAGING	P. 79
FIGURE 5.3: RIGHT BREAST MASS IN AXIAL HIGH B-VALUE DW-MR IMAGE, AND ON ADC MAPS	P.82
FIGURE 5.4: DUCTAL CARCINOMA IN T1WI, COLOR CODED DIFFUSION IMAGE AND COLOR CODED ADC- MAP	P. 82
FIGURE 5.5: CYST SHOWING BRIGHT COLOUR ON THE ADC MAP	P. 83
FIGURE 5.6: CORRELATION BETWEEN EXP(-B · D) AND B VALUE AT VARIOUS DIFFUSION COEFFICIENTS	P. 86
FIGURE 5.7: DWI OF DCIS OBTAINED AT B VALUES OF 500, 1000, AND 1500 SEC/MM ²	P. 88
FIGURE 5.8: CHANGES IN ADC VALUE VERSUS CHANGES IN B VALUE	P.89
Figure 5.9.: IDC. IN CONTRAST-ENHANCED T1-WEIGHTED MR IMAGE, DWI and PHOTOMICROGRAPH	P.92
FIGURE 5.10: IDC WITH CENTRAL NECROSIS	P.93
FIGURE 5.11: DCIS AND FIBROCYSTIC DISEASE	P.96
FIGURE 5.12: INVASIVE LOBULAR CARCINOMA	P.97
FIGURE 5.13: MUCINOUS CARCINOMA	P. 98
FIGURE 5.14: INTRADUCTAL PAPILLOMA	P.101
FIGURE 5.15: FIBROADENOMA WITH MYXOMATOUS CHANGE	P.101
FIGURE 5.16: BILATERAL MULTIPLE FIBROADENOMA IN THE BREASTS	P.102
FIGURE 5.17: BENIGN PHYLLODES TUMOR	.P.102
FIGURE 5.18: BILATERAL FIBROCYSTIC DISEASE IN THE BREASTS	P.103
FIGURE 5.19: MASTITIS	P.103
FIGURE 5.20: MULTIPLE CYSTS	P.104
FIGURE 5.21: HEMORRHAGE	P.105
FIGURE 7.1: MAMMOGRAPHY PREDICTIVE VALUES	P.117
FIGURE 7.2: CEDM ENHANCEMENT FINDINGS	P.118

FIGURE 7.3: CEDM DIFFERENT ENHANCEMENT CHARACTERSTICS OF MASS LESION	P.119
FIGURE 7.4: CEDM BIRADS FOR DETECTED BREAST LESIONS	P.120
FIGURE 7.5: DIAGNOSTIC INDICES OF CEDM	P.122
FIGURE 7.6: MRI BIRADS SCORE FOR DIFFERENT ENCOUNTERED BREAST LESIONS	P.124
FIGURE 7.7: DCE-MRI DIAGNOSTIC INDICES	P.127
FIGURE 7.8: ROC CURVE FOR ADC THRESHOLD 1.23 x10-3mm2/sec	P.129
FIGURE 7.9: DIFFUSION WI DIAGNOSTIC INDICES	P.130
FIGURE 7.10: DIAGNOSTIC INDICES FOR COMBINED DIFFUSION AND CEDM	P.132
FIGURE 7.11: DIAGNOSTIC INDICES OF COMBINED DWI AND DCE-MRI	P.13

LIST OF TABLES

TABLE 2.1: HISTOLOGIC CLASIFICATION OF BREAST CANCER	27
TABLE 2.2: TNM STAGE GROUPING FOR BREAST CANCER	38
TABLE 4.1: Breast MRI Terms of the American College of Radiology	50
TABLE 5.1: SIGNAL INTENSITY AND ADC VALUE FOR VARIOUS PATHOLOGIC CONDITION OF THE BREAST	91
TABLE 7.1: DIFFERENT PATHOLOGIC ENTITIES INCLUDED IN THE STUDY	114
TABLE 7.2: MAMMOGRAPHIC FINDINGS IN THE STUDY POPULATION	115
TABLE 7.3: MAMMOGRAPHY BIRADS SCORE IN DIFFERENT ENCOUNTERED BREAST LESIONS	115
TABLE 7.4: MAMMOGRAPHY DIAGNOSTIC INDICES	117
TABLE 7.5: CEDM ENHANCEMENT FINDINGS	118
TABLE 7.6: CEDM DIFFERENT ENHANCEMENT CHARACTERSTICS OF MASS LESION	119
TABLE 7.7: CEDM BIRADS FOR DETECTED BREAST LESIONS	120
TABLE 7.8: ASSOCIATION BETWEEN PATHOLOGY AND CEDM	121
TABLE 7.9: DIAGNOSTIC INDICES OF CEDM	122
TABLE 7.10: MRI BIRADS SCORE FOR DIFFERENT ENCOUNTERED BREAST LESIONS	123
TABLE 7.11: DCE – MRI DIFFERENT ENHANCEMENT PATTERNS	124
TABLE 7.12: DCE-MRI DIFFERENT MASS ENHANCEMENT PATTERNS	125
TABLE 7.13: Association between pathology and percentage of maximum enhancement	125
TABLE 7.14: ASSOCIATION BETWEEN PATHOLOGY AND DYNAMIC MRI	126
TABLE 7.15: DCE-MRI DIAGNOSTIC INDICES	127
TABLE 7.16: MEAN ADC VALUE FOR BENIGN AND MALIGNANT LESIONS	128
TABLE 7.17: CORRELATION BETWEEN PATHOLOGY AND ADC VALUE	129
TABLE 7.18: DIFFUSION WI DIAGNOSTIC INDICES	130
TABLE 7.19: Association between Pathology and Combined Diffusion weighted images and CEDM	131
TABLE 7.20: DIAGNOSTIC INDICES FOR COMBINED DIFFUSION AND CEDM	132
TABLE 7.21: Association between pathology and combined DWI with DCE-MRI	133
TABLE 7.22: DIAGNOSTIC INDICES OF COMBINED DWI AND DCE-MRI	134

INTRODUCTION

Breast cancer is one of the most common types of cancer. Despite advances in mammography, at least one in four malignant tumors remains undetected using screening mammography alone [Pisano et al 2005] Ultrasound is a complementary technique to mammography, especially for dense breasts and is part of the standard of care in diagnostic procedures. Manual US examinations are time-consuming, operator dependant and findings have to be characterized during the procedure with limited possibility of a second independent evaluation of already captured images [Kolb et al, 2002]

Taking advantage of the inherent capabilities of image processing in digital mammography, advanced applications may bring additional clinical and cost benefits to the current standard of care. Among these applications, contrast-enhanced digital mammography (CEDM) may specifically open the door to detection of angiogenesis in the mammography suite [Dromain et al ,2011]

Dual-energy CEDM has a higher diagnostic accuracy for the detection of breast carcinoma compared with mammography alone and with mammography interpreted in association with ultrasound. CEDM may be useful for the assessment of the extent of disease as well as the clarification of equivocal lesions. These results encourage further investigations to define the place of CEDM among the other breast imaging methods in particular in comparison to breast MRI[Dromain et al., 2011]

Magnetic resonance imaging (MRI) is a highly sensitive procedure, but indications for a breast MRI are necessarily stringent due to the time and cost involved. However, there are several well-established clinical criteria for MRI of the breast, such as to differentiate between a scar and recurrent cancer, to evaluate cancers of unknown primary origin with metastases indicating breast malignancy, to do screening in high risk populations and to determine preoperative tumor extent or Staging [Diekmann et al ,2009]

Diffusion-weighted imaging provides a novel contrast mechanism in magnetic resonance (MR) imaging and has a high sensitivity in the detection of changes in the local biologic environment. A significant advantage of diffusion-weighted MR imaging over conventional contrast material—enhanced MR imaging is its high sensitivity to change in the microscopic cellular environment without the need for intravenous contrast material injection. [Woodhams et al 2011]

However, the incorporation into clinical decision making of information gleaned from diffusion-weighted breast imaging has been slow compared to the use of information obtained from diffusion-weighted imaging of other organs. One reason is that the diagnostic role of diffusion-weighted imaging in breast imaging hasnot been incorporated into the already established Breast Imaging and Reporting Data System lexicon [American College of Radiology, BI-RADS atlas. Reston, Va: American College of Radiology, 2003].

Contrast material—enhanced breast MR imaging is currently accepted as the most sensitive imaging technique for the diagnosis and staging of breast cancer. However, several studies have noted that conventional breast MR imaging, including T2-weighted imaging and contrast-enhanced T1- weighted imaging, is limited in terms of specificity in the assessment of breast tumors [Ghai et al., 2005]

Consequently, there has been considerable interest in the development of adjunct MR imaging methods to improve the specificity of dynamic contrast-enhanced breast MR imaging, and diffusion-weighted breast imaging is being investigated for its potential to improve breast disease diagnosis at the cost of a small increase in examination time. [Woodhams et al 2011]

Approaches to the assessment of diffusion-weighted breast imaging findings include assessment of these data alone and interpretation of the data in conjunction with T2-weighted imaging findings. In addition, the analysis of apparent diffusion coefficient (ADC) value can be undertaken either in isolation or in combination with diffusion-weighted and T2-weighted imaging. [Woodhams et al 2011]

The apparent diffusion coefficient (ADC), derived from non-invasive, in vivo diffusion-weighted magnetic resonance imaging (DW MRI), is increasingly being included .The ADC reflects the Brownian intra and extracellular motion of water molecules in biological tissue and thus provides information about the tumor microenvironment Several potential applications for the ADC in breast cancer have been suggested and studied; including detection, characterization, differentiation of tumors as well as evaluation of neoadjuvant treatment response [Nilsen et al ,2013]

Aim of work

The aim of this study is to correlate the results of DWI MRI and the calculated ADC value with the contrast enhanced digital mammography to determine the specificity of DWI in detection and diagnosis of breast lesions , to reach a cut off value for differentiating malignant and benign lesion and to investigate the possibility of DWI MRI replace the contrast imaging .