A THESIS ENTITLED

SYNTHESIS AND CHARACTERIZATION OF SOME NOVEL WHOLLY AROMATIC AZOPOLYAMIDE-HYDRAZIDES

Submitted by

Ali Mohamed Ali Ibrahem El Shafai

(B.Sc., Chemistry)

For

The Partial Fulfillment of **The Degree of Master of Science**(Organic Chemistry)

Department of Chemistry
Faculty of Science
Cairo University
Giza, Egypt

(2010)

Approval Sheet for Submission

Title of the M.Sc. Thesis: "Synthesis and characterization of some novel wholly aromatic azopolyamide-hydrazides"

Name of Candidate: Ali Mohamed Ali Ibrahim Elshafai

This thesis has been approved for submission by the supervisors:

- 1. Prof. Dr. Nadia Ahmed Mohamed Ahmed Signature:
- 2. Prof. Dr. Mohammad Husain Sammour Signature:

Prof. Dr. Mohamed M. Shoukry Chairman of Chemistry Department Faculty of Science - Cairo University

ACKNOWLEDGEMENT

The work described in this thesis has been carried out under the supervision of *Prof. Dr. Nadia Ahmed Mohamed Ahmed*, Professor of Polymer Chemistry, Faculty of Science, Cairo University, and *Prof. Dr. Mohammad Husain Sammour*, Head of Projects and Planning Sector, Heliopolis Company for Chemical Industries.

The author is indeed fortunate to have *Prof. Dr. Nadia* as his academic and thesis advisor. Through her creative ability, analytical mind, intelligence and patience, *Prof. Dr. Nadia* has the faculty for attracting her research students and coaxing them to produce their best. Furthermore, her encouraging guidance, invaluable suggestion, libral discussion throughout the research made this work possible.

The author introduce his grateful appreciation to *Prof. Dr. Sammour*, for his help and guidance.

Cairo University

Faculty of Science

Chemistry Department

To whom it may concern

Besides the work carried out in this thesis, the candidate **Ali Mohamed Ali Ibrahem Elshafai** had studied the following post-graduate courses during the academic year 2006-2007 and passed their exams successfully.

- Heterocyclic Chemistry.
- Organic Spectroscopy.
- Advanced Physical Organic Chemistry.
- Natural Products.
- Biochemistry.
- Polymer Chemistry.
- Designing Organic Chemistry.
- Organic Photochemistry.
- Quantum Chemistry.
- Methods of Elucidation of Molecular Structure.
- Dyes.
- Elective Course (Green Chemistry).
- Carbohydrates Chemistry.
- Foreign language (German).

Prof. Dr. Mohamed M. Shoukry		
()	
	emistry Department e- Cairo University	

Abstract

Name: Ali Mohamed Ali Ibrahem Elshafai

Title of the thesis: "Synthesis and characterization of some novel wholly aromatic

azopolyamide-hydrazides"

Degree: M.Sc., Unpublished Master of Science Thesis, Department of Chemistry,

Faculty of Science, Cairo University, 2010.

Twelve novel intrinsically colored wholly aromatic polyamide-hydrazides containing various proportions of para-phenylene and meta-phenylene units and azo linkages into their main chains were successfully synthesized by a low temperature solution polycondensation 3-amino-4reaction of either 4-amino-3-hydroxybenzhydrazide (4A3HBH) hydroxybenzhydrazide (3A4HBH) with an equimolar amount of either 4,4'-azodibenzoyl chloride (4,4'ADBC), 3,3'-azodibenzoyl chloride (3,3'ADBC), or mixtures of various molar ratios of 4,4'ADBC and 3,3'ADBC in anhydrous DMAc containing 3% (wt / v) LiCl as a solvent at -10 °C. The structures of the polymers were proven by elemental analyses, fourier transform infrared spectra, ultraviolet-visible spectra, ¹H and ¹³C NMR spectra. Polymers properties were strongly affected by their structural variations. The solubility and the hydrophilic character of the polymers increased as a function of meta-oriented phenylene rings content incorporated into the polymer chains. On the other hand, the intrinsic viscosity, tensile strength, crystallinity, thermal and thermo-oxidative stability of the polymers increased as a function of para-phenylene units content in the polymer. The dye of the self-dyed prepared azopolymers showed a much better thermal, light and solvent migration properties than those exhibited by the monomeric dyes (4,4`ADBC and 3,3`ADBC). The dye migration properties of the azopolymers improved as a function of their para-phenylene units content. Further, the azopolymers showed a great affinity for complexation with various heavy metal salts. This affinity is not only dependant on the type and amount of metal salt used, but also on the polymer structural differences.

Key words: Polyamide-hydrazides; Azo linkages; Synthesis; Characterization, Dye migration properties; Metal complexation.

Supervisors:

Prof. Dr. Nadia Ahmed Mohamed Ahmed (Faculty of Science, Cairo University)	()
Prof. Dr. Mohammad Husain Sammour (Heliopolis Co. for Chemical Industries)	()
	Chairman of C) named M. Shoukry Chemistry Department ence - Cairo University

Contents

		Page
	Aim of the work	
	List of Abbreviations	
	List of Figures	
	List of Tables	
Chapter 1:	Literature Survey	
1.1.	Synthetic methods of wholly aromatic polyamide-hydrazides .	1
1. 1. 1.	Low temperature solution polycondensation	1
1. 1. 1. 1.	Polycondensation between aromatic aminohydrazide and	
	aromatic dicarboxylic acid dichloride	1
1. 1. 1. 2.	Polycondensation between aromatic diamine containing	
	hydrazide linkage and aromatic dicarboxylic acid dichloride	13
1. 1. 1. 3.	Polycondensation between aromatic dihydrazide containing	
	amide linkage and aromatic diacid dichloride	16
1. 1. 2.	Phosphorylation polycondensation	17
1. 1. 2. 1.	Polycondensation between aromatic aminohydrazide with	
	aromatic dicarboxylic acid	17
1. 1. 2. 2.	Polycondensation between aromatic diamine containing	
	hydrazide linkage and aromatic dicarboxylic acid	23
1. 2.	Characterization of wholly aromatic PAHs	25
1. 2. 1.	Solubility	25
1. 2. 2.	Viscosity	26
1. 2. 3.	Percent moisture regain (%MR)	27
1. 2. 4.	Thermal stability	27
1. 2. 5.	Chemical stability	29
1. 3.	Applications of wholly aromatic PAHs	29
1. 3. 1.	Wholly aromatic PAHs membranes for reverse osmosis	
	separations	29
1. 3. 2.	Wholly aromatic PAHs fibers	31
1. 3. 3.	Metallized wholly aromatic PAH films	32
Chapter 2:	Materials and Experimental Techniques	
2. 1.	Materials	33
2. 1. 1.	Reagents	33

		Page
2. 1. 2.	Solvents	33
2. 2.	Methods	33
2. 2. 1.	Synthesis of the monomers	33
2. 2. 1. 1.	Synthesis of amino hydroxybenzhydrazide	33
2. 2. 1. 2.	Synthesis of 4.4`-azodibenzoyl chloride (4, 4 ADBC)	40
2. 2. 1. 3.	Synthesis of 3, 3`-azodibenzoyl chloride (3, 3`ADBC)	43
2. 2. 2.	Synthesis of the polymers	46
2. 2. 3.	Film preparation	46
2. 3.	Measurements and instruments	46
2. 3. 1.	Infrared spectra	46
2. 3. 2.	¹ H and ¹³ C NMR spectra	46
2. 3. 3.	Mass spectra	47
2. 3. 4.	Elemental analyses	47
2. 3. 5.	Intrinsic viscosity	47
2. 3. 6.	Solubility	47
2. 3. 7.	Percent moisture regain	47
2. 3. 8.	X-ray diffraction	47
2. 3. 9.	Mechanical properties	48
2. 3. 10.	Thermogravimetric analyses	48
2. 3. 11	Differential scanning calorimetry	48
2. 3. 12.	Ultraviolet - visible spectra	48
2. 3. 13.	Dye thermal migration	48
2. 3. 14.	Dye light migration	49
2. 3. 15	Dye solvent migration	49
2. 3. 16.	Evaluation of the efficiency of the azopolymers for various	
	heavy metal salts	50
Chapter 3:	Results and Discussion	
3. 1.	Polymer synthesis	51
3. 2.	Polymer identification	55
3. 3.	Polymer characterization	60
3. 3. 1.	Intrinsic viscosity	60
3. 3. 2.	Solubility	60

		Page
3. 3. 3.	Percent moisture regain	62
3. 3. 4.	X-ray diffraction	62
3. 3. 5.	Mechanical properties	64
3. 3. 6.	Thermal and thermo-oxidative stability	66
3. 3. 6. 1.	Influence of the structural differences of the polymers on their	
	thermal and thermo-oxidative stability	66
3. 3. 6. 2.	Influence of the molecular weight of the polymers on their	
	thermal and thermo- oxidative stability	94
3. 3. 7.	Ultraviolet-visible spectroscopy	107
3. 4.	The industrial applications of the polymers	109
3. 4. 1.	Investigation of dye thermal migration	109
3. 4. 2.	Investigation of the uv fastness of the dye of self-dyed azo	
	polymers	111
3. 4. 3.	Investigation of the solvent fastness of the dye of self-dyed	
	azo polymers	113
3. 4. 4.	Evaluation of the efficiency of the azopolymers for various	
	heavy metal salts	117
Chapter 4:	References	122
	Summary and General Conclusions	128
	Arabic Summary	

List of Tables

Table	Page No.
Table (1-1): Monomer compositions and inherent viscosities of	2
wholly aromatic PAHs	2
Table (1-2): Monomer compositions and moisture regain of	5
various wholly aromatic PAHs	3
Table (1-3): Monomer compositions, inherent viscosities and	(
moisture regain of wholly aromatic PAH terpolymers	6
Table (1-4): Viscosity of polymer <u>27</u> samples	7
Table (1-5): Monomer compositions, inherent viscosities and	
moisture regain of various wholly aromatic polyether-amide-	9
hydrazides	
Table(1-6): Inherent viscosity of wholly aromatic amide-	11
hydrazide copolymers	
Table (1-7): Wholly aromatic PAHs having various para- / meta-	12
phenylene units content	12
Table (1-8): Repeating units of the wholly aromatic PAHs	12
having various para- / meta-phenylene units content	12
Table (1-9): Aromatic hydrazide diamines	13
Table (1-10): Completely ordered wholly aromatic PAHs	14
Table (1-11): Preparation of wholly aromatic PAHs by the	
direct polycondensation reaction of PABH with dicarboxylic	18
acids with TPP and LiCl in NMP ^a	
Table (1-12): Wholly aromatic PAHs from PABH and	20
dicarboxylic acids by using DPP ^a	20
Table (1-13): Polycondensation of PABH and TPA under	20
various conditions ^a	20
Table (3-1): Syntheses of novel wholly aromatic azopolyamide-	
hydrazides containing various proportions of para-phenylene and	52
meta phenylene units	
Table (3-2): Elemental analysis data of novel wholly aromatic	
azopolyamide-hydrazides containing various proportions of	56
para-phenylene and meta- phenylene units	

Table (3-3): Maximum solubility and percent moisture regain of	61
the novel wholly aromatic azopolyamide-hydrazides containing various proportions of para-phenylene and meta- phenylene units	01
Table (3-4): Mechanical properties of novel wholly aromatic	
azopolyamide-hydrazides containing various proportions of	65
para-phenylene and meta- phenylene units	
Table(3-5): Thermogravimetric analyses of novel wholly	
aromatic azopolyamide-hydrazides containing various	
proportions of para-phenylene and meta- phenylene rings, in	69
nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a	
gas flow rate of 30 ml min ⁻¹	
Table (3-6): Thermogravimetric analyses of novel wholly	
aromatic azopolyamide-hydrazides containing various	
proportions of para-phenylene and meta- phenylene rings, in air	70
atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow	
rate of 30 ml min ⁻¹	
Table (3-7): Elemental analyses of some novel wholly aromatic	
azopolyamide-hydrazides containing various proportions of	72
para- phenylene and meta- phenylene rings before and after	72
thermal treatment	
Table (3-8): Repeating units of the poly (1, 3, 4-oxadiazolyl-	
benzoxazoles) resulting from thermal treatment of the novel	80
wholly aromatic azopolyamide-hydrazides containing various	00
proportions of para-phenylene and meta-phenylene rings	
Table (3-9): Elemental analyses of some of the resulting	83
poly(1,3,4- oxadiazolyl-benzoxazoles) ^a	03
Table (3-10): Syntheses of completely para- oriented phenylene	95
polymers having different molecular weights	
Table (3-11): Elemental analyses of perfectly para- oriented	
phenylene azopolyamide-hydrazides having different molecular	101
weights before and after thermal treatment in nitrogen	- 32
atmosphere for 30 minutes	

Table (3-12): Evaluation of the dye thermal migration (% Mp) of	
self-dyed novel wholly aromatic azopolyamide-hydrazides	110
containing various proportions of para-phenylene and meta-	110
phenylene units	
Table (3-13): Evaluation of the dye light migration (% Mp) of	
self-dyed novel wholly aromatic azopolyamide – hydrazides	112
containing various proportions of para-phenylene and meta-	112
phenylene units	
Table (3-14): Solvent wash-off resistance of dye of polymer I	114
and monomeric dye 4, 4`ADBC	114
Table (3-15): Solvent wash-off resistance of dye of polymer XII	115
and monomeric dye 3, 3'ADBC	113
Table (3-16): Solvent wash-off resistance of dye of polymers	116
IVand IX	110
Table (3 -17): Evaluation of the efficiency of polymer I for	118
complexation with various heavy metal salts	110
Table (3-18): Evaluation of the efficiency of polymer IV for	119
complexation with various heavy metal salts	119
Table (3-19) : Evaluation of the efficiency of polymer IX for	120
complexation with various heavy metal salts	120
Table (3-20): Evaluation of the efficiency of polymer XII for	121
complexation with various heavy metal salts	121

List of Figures

Figure	Page No.
Fig. (2-1). FTIR spectrum of 4A3HBH.	35
Fig. (2-2). ¹ H NMR spectrum of 4A3HBH in DMSO- <i>d</i> ₆ .	35
Fig. (2-3). ¹³ C NMR spectrum of 4A3HBH in DMSO- <i>d</i> ₆ .	36
Fig. (2-4). Mass spectrum of 4A3HBH.	36
Fig. (2-5). FTIR spectrum of 3A4HBH.	38
Fig. (2-6). ¹ H NMR spectrum of 3A4HBH in DMSO- <i>d</i> ₆ .	38
Fig. (2-7). ¹³ C NMR spectrum of 3A4HBH in DMSO-d ₆ .	39
Fig. (2-8). Mass spectrum of 3A4HBH.	39
Fig. (2-9). FTIR spectrum of 4,4 ADBC.	41
Fig. (2-10). ¹ H NMR spectrum of 4,4`ADBC in DMSO- <i>d</i> ₆ .	41
Fig. (2-11). ¹³ C NMR spectrum of 4,4`ADBC in DMSO- <i>d</i> ₆ .	42
Fig. (2-12). Mass spectrum of 4,4 ADBC.	42
Fig. (2-13). FTIR spectrum of 3,3`ADBC.	44
Fig. (2-14). ¹ H NMR spectrum of 3,3`ADBC in DMSO-d ₆ .	44
Fig. (2-15). ¹³ C NMR spectrum of 3,3`ADBC in DMSO- <i>d</i> ₆ .	45
Fig. (2-16). Mass spectrum of 3,3`ADBC.	45
Fig. (2-17). The glass plate for measuring the dye migration.	49
Fig. (3-1). Changes of FTIR peak intensities of novel wholly aromatic	
azopolyamide-hydrazides as a function of their para-phenylene and meta-	57
phenylene rings content.	
Fig. (3-2). ¹ H NMR spectrum of polymer XII in DMSO- <i>d</i> ₆ .	59
Fig. (3-3). ¹³ C NMR spectrum of polymer XII in DMSO- <i>d</i> ₆ .	59
Fig. (3-4). Wide–angle X-ray diffractograms of the novel wholly aromatic	
azopolyamide- hyrdrazides containing various proportions of para-phenylene and	63
meta- phenylene rings.	
Fig. (3-5). Typical TG thermograms patterns of novel wholly aromatic	
azopolyamide-hydrazides containing various proportions of para- phenylene and	67
meta- phenylene rings. All the thermograms were recorded in nitrogen atmosphere	07
at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ .	

Fig. (3-6). Typical TG thermograms patterns of novel wholly aromatic azopolyamide-hydrazides containing various proportions of para- phenylene and meta- phenylene rings. All the thermograms were recorded in air atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ .	68
Fig. (3-7). Typical TG thermograms patterns of polymer I, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 150 °C; (iii) after preheating to 500 °C.	73
Fig. (3-8). Typical TG thermograms patterns of polymer III, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 150 °C; (iii) after preheating to 450 °C.	74
Fig. (3-9). Typical TG thermograms patterns of polymer V, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 150 °C; (iii) after preheating to 410 °C.	75
Fig. (3-10). Typical TG thermograms patterns of polymer VIII, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 150 °C; (iii) after preheating to 370 °C.	76
Fig.(3-11). Typical TG thermograms patterns of polymer X, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 150 °C; (iii) after preheating to 350 °C.	77
Fig. (3-12). Typical TG thermograms patterns of polymer XII, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 150 °C; (iii) after preheating to 320 °C.	78
Fig. (3-13). Variations of the FTIR spectra of polymer I, which had been thermally treated at 500 °C under nitrogen atmosphere for various time intervals.	84
Fig. (3-14). DSC thermograms of novel wholly aromatic azopolyamide-hydrazides containing various proportions of para-phenylene and meta-phenylene rings. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : A: evaporation of absorbed moisture; B: cyclodehydration reaction; C: loss of azo groups; D: degradation of the resulting poly (1, 3, 4-oxadiazolyl-benzoxazoles).	86
Fig. (3-15). DSC thermograms of polymer I, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) full scan; (ii) rescan after preheating to 150 °C; (iii) rescan after preheating to 410 °C; (iv) rescan after preheating to 500°C: A: evaporation of absorbed moisture; B: cyclodehydration reaction; C: loss of azo groups; D: degradation of the resulting poly (1, 3, 4-oxadiazolyl-benzoxazoles).	88

Fig. (3-16). DSC thermograms of polymer III, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) full scan; (ii) rescan after preheating to 150 °C; (iii) rescan after preheating to 390 °C; (iv) rescan after preheating to 450 °C: A: evaporation of absorbed moisture; B: cyclodehydration reaction; C: loss of azo groups; D: degradation of the resulting poly (1, 3, 4-oxadiazolyl-benzoxazoles).	89
Fig. (3-17). DSC thermograms of polymer V, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) full scan; (ii) rescan after preheating to 150 °C; (iii) rescan after preheating to 350 °C; (iv) rescan after preheating to 410 °C: A: evaporation of absorbed moisture; B: cyclodehydration reaction; C: loss of azo groups; D: degradation of the resulting poly (1, 3, 4-oxadiazolyl-benzoxazoles).	90
Fig. (3-18). DSC thermograms of polymer VIII, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) full scan; (ii) rescan after preheating to 150 °C; (iii) rescan after preheating to 300 °C; (iv) rescan after preheating to 370 °C: A: evaporation of absorbed moisture; B: cyclodehydration reaction; C: loss of azo groups; D: degradation of the resulting poly (1, 3, 4-oxadiazolyl-benzoxazoles).	91
Fig. (3-19). DSC thermograms of polymer X, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) full scan; (ii) rescan after preheating to 150 °C; (iii) rescan after preheating to 290 °C; (iv) rescan after preheating to 350 °C: A: evaporation of absorbed moisture; B: cyclodehydration reaction; C: loss of azo groups; D: degradation of the resulting poly (1, 3, 4-oxadiazolyl-benzoxazoles).	92
Fig. (3-20). DSC thermograms of polymer XII, in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) full scan; (ii) rescan after preheating to 150 °C; (iii) rescan after preheating to 250 °C; (iv) rescan after preheating to 320 °C: A: evaporation of absorbed moisture; B: cyclodehydration reaction; C: loss of azo groups; D: degradation of the resulting poly (1, 3, 4-oxadiazolyl-benzoxazoles).	93
Fig. (3-21). Typical TG thermograms patterns of novel wholly para- oriented phenylene type azopolyamide-hydrazides having different molecular weights. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ .	96

Fig. (3-22). Typical TG thermograms patterns of novel wholly para- oriented phenylene type azopolyamide-hydrazides having different molecular weights. All the thermograms were recorded in air atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ .	97
Fig. (3-23). Typical TG thermograms patterns of novel wholly para- oriented phenylene type azopolyamide-hydrazide XIII. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 250 °C.	98
Fig. (3-24). Typical TG thermograms patterns of novel wholly para- oriented phenylene type azopolyamide-hydrazide XIV. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 250 °C.	99
Fig. (3-25). Typical TG thermograms patterns of novel wholly para- oriented phenylene type azopolyamide-hydrazide XV. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 250 °C.	100
Fig. (3-26). DSC thermograms of novel wholly para- oriented phenylene type azopolyamide-hydrazides having different molecular weights. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ . A: evaporation of absorbed moisture; B: liberation of hydrogen bonded DMAc; C: cyclodehydration reaction; D: loss of azo groups; E: degradation of the resulting poly(1,3,4-oxadiazolyl-benzoxazoles).	103
Fig. (3-27). DSC thermograms of novel wholly para- oriented phenylene type azopolyamide-hydrazide, XIII. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 250 °C. A: evaporation of absorbed moisture; B: liberation of hydrogen bonded DMAc; C: cyclodehydration reaction; D: loss of azo groups; E: degradation of the resulting poly(1,3,4-oxadiazolyl-benzoxazoles).	104
Fig. (3-28). DSC thermograms of novel wholly para- oriented phenylene type azopolyamide-hydrazide, XIV. All the thermograms were recorded in nitrogen atmosphere at a heating rate of 10 °C min ⁻¹ and under a gas flow of 30 ml min ⁻¹ : (i) as prepared; (ii) after preheating to 250 °C. A: evaporation of absorbed moisture; B: liberation of hydrogen bonded DMAc; C: cyclodehydration reaction; D: loss of azo groups; E: degradation of the resulting poly(1,3,4-oxadiazolyl-benzoxazoles).	105