Significance of Rapid Screening Methods as Rule-out Tests for Urinary Tract Infections in Catheterized Patients

Thesis

Submitted for partial Fulfillment of Master Degree in Basic Medical Science (Microbiology & Immunology)

Presented by

Amr Mohamed Mahmoud

M.B.B.CH

Faculty of Medicine, Zagazig University 2004

Under supervision of

Prof. Maha Muhammad Fathy

Professor of Microbiology & Immunology Faculty of Medicine, Ain Shams University

Dr. Soha Abd El-Rahman El-Hady

Assistant Professor of Microbiology & Immunology Faculty of Medicine, Ain Shams University

Dr. Raafat Zaher Abd El-Rahman

MD, Microbiology & Immunology Military Medical Academy

> Faculty of Medicine Ain Shams University 2012

إمكانية إستخدام طرق الفحص السريعة كدليل على عدم وجود عدوى المجارى البولية فى المرضى المقتطرين

رسالة توطئة للحصول على درجة الماجستير فى العلوم الطبية الأساسية (الكائنات الدقيقة والمناعة)

مقدمة من

الطبيب/ عمرو محمد محمود بكالوريوس الطب والجراحة 2004 كلية الطب- جامعة الزقازيق

تحت إشراف الاكتور/ مها محمد فتحى أستاذ الميكروبيولوجي والمناعة كلية الطب جامعة عين شمس

دكتور/ سها عبد الرحمن الهادى أستاذ مساعد الميكروبيولوجى والمناعة كلية الطب- جامعة عين شمس

دكتور/ رأفت زاهر عبد الرحمن دكتوراه الميكروبيولوجي والمناعة محاضر بالأكاديمية الطبية العسكرية

كلية الطب جامعة عين شمس 2012

First and foremost thanks to "ALLAH" who is the most beneficial and the most merciful.

I would like to express my deep sincere appreciations and thanks to my great teacher **Prof. Maha Muhammad Fathy** Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, who was been kind enough to spare no effort and no time to advice, to supervise, to teach and to give willingly and lavishly from her inexhaustible treasure of knowledge.

I wish to thank **Dr. Soha Abd El-Rahman El-Hady** Ass. Prof. of Medical Microbiology & Immunology, Faculty of Medicine, Ain Shams University for her kind supervision, tremendous assistance and valuable criticism.

I am greatly honored to express my deep gratitude to Brigadier-General **Dr. Raafat Zaher Abd El-Rahman**, Consultant of Microbiology and Immunology, Military Central Labs, Military Medical Academy. He gave me much of his time, experience, meticulous advice, kind support and mastery teaching, without his care this work could never be within hands.

I also want to thank all my colleagues in Military Central Labs for their kind help and encouragement especially Major **Dr. Ahmed Gad Taha**.

CONTENTS

*	List of Abbreviations	<i>I</i>
**	List of Tables	IV
	List of Figures	
	Introduction and Aim of the Work	
	Review of Literature	
	Urinary tract infection	
	Defense mechanisms	
	• Criteria for classification and definitions	6
	Risk Factors	8
	Causative organisms	11
	Differential Diagnosis	12
	• Complications	
	♣ Catheter associated UTI	16
	Criteria for definitions of CAUTI	17
	Risk factors	21
	• Pathogenesis	22
	Biofilm formation	23
	Microbiology	28
	♣ Diagnosis of CAUTI	
	♣ Prevention of CAUTI	
	♣ Treatment of CAUTI	
	♣ UTI and Multi drug resistant organisms (MDROs)	52
	 Extended Spectrum beta lactamases (ESβLs) 	
	producing Gram negative bacilli	
	• Carbapenem resistant Enterobacteriaceae (CRE).	
**	Subjects and Methods	62
**	Results	75
**	Discussion	94
*	Summary and conclusion	102
	Recommendations	
	References	
	Arabic Summary	.100

List of Abbreviations

ABUTI	Asymptomatic Bacteremic Urinary Tract Infection
AUC	Area under curve
CA-ASB	Catheter associated asymptomatic bacteruria
CAPD	Continuous ambulant peritoneal dialysis
CAUTI	Catheter associated urinary tract infection
CDC	The Center for Disease Control and Prevention
CFU	Colony forming units
CLED	Cystine-Lactose-Electrolyte-Deficient
CNS	Coagulase-negative staphylococci
CORUR	Corynebacterium urealyticum
COS	Corynebacterium species unspecified
CRE	Carbapenem- Resistant Enterobacteriaceae
CRKP	Carbapenem- Resistant Klebsiella pneumoniae
CSU	Catheter specimen of urine
CTX-M	Cefotaxime-M
ECDC	European Centre for Disease Prevention and
	Control
ESBLs	Extended spectrum \(\mathcal{B}\)-lactamases
GAG	Glycosaminoglycan
HAIs	Healthcare-acquired infections
HPF	High power field
ICU	Intensive Care Unit
IVP	Intravenous pyelogram

LE	Leucocyte esterase
LTC	Long-term care
LTCF	Long-term care facilities
LUTI	Lower urinary tract infection
MBLs	Metallo beta lactamases
MRI	Magnetic resonance imaging
MDR	Multiple drug resistance
NDM-1	New Delhi metallo-β-lactamase-1
NDM-2	New Delhi metallo-β-lactamase-2
NPV	Negative predictive value
OIF	Oil immersion field
OUTI	Other Urinary Tract Infection
OXA-48	Oxacillinases-48
PEARLS	Pan European Antimicrobial Resistance using
	Local Surveillance
PPV	Positive predictive value
ROC	Receiver Operating Curve
SHV-1	Sulfhydryl variable-1
SHV-2	Sulfhydryl variable-2
SUTI	Symptomatic Urinary Tract Infection
TEM-1	Temoniera-1
TEM-2	Temoniera-2
TEM-3	Temoniera-3
UTI	Urinary tract infection
UUTI	Upper urinary tract infection

TSST-1	Toxic shock syndrome toxin-1
UA	Urinalysis
VIM	Verona Integron-Encoded Metallo- β -Lactamase
VUR	Vesicouretheral reflux
WBC	White blood cell

List of Tables

Page
<u>Table (1):</u> Criteria for definitions of UTI17
<u>Table (2):</u> Indications for appropriate and inappropriate urinary catheterization
Table (3): The characteristics of the growing colonies on CLED agar with Andrade's indicator
Table (4): Phenotypic confirmatory test for ESβLs production
Table (5): Clinical data of the study subjects
Table (6): Culture results of samples with significant growth
<u>Table (7):</u> Comparison between results of microscopic examination of Gram stained films and culture results78
<u>Table (8):</u> Comparison between results of microscopic examination of Uncentrifuged urine and culture results78
<u>Table (9):</u> Comparison between results of microscopic examination of Centrifuged urine and culture results79
Table (10): Comparison between results of Nitrite detection and culture results
<u>Table (11):</u> Comparison between results of Leukocyte esterase detection and culture results80
<u>Table (12):</u> Performance characteristics of individual rapid tests in relation to urine culture results80

Table (13): Comparison between combined results of nitrite and leukocyte esterase detection in relation to culture results
Table (14): Comparison between combined results of Dipstick testing and microscopy of Gram stained films in relation to culture results
Table (15): Comparison between combined results of microscopy of Gram stained films for bacteriuria and microscopy of wet preparations of uncentrifuged and centrifuged urine for pyuria in relation to culture results
<u>Table (16):</u> Comparison between combined results of Dipstick testing and microscopy of uncentrifuged urine for pyuria in relation to culture results85
Table (17): Comparison between results for Dipstick testing and/or microscopy of centrifuged urine in relation to culture results
<u>Table (18):</u> Performance characteristics of different test combinations in relation to urine culture results86
Table (19):Frequency and Rate of extended spectrum $β$ lactamase (ES $β$ L) producing isolates among isolated Gramnegative bacilli

List of Figures

Page
Figure (1): Anatomy of male and female urinary tract5
Figure(2): Routes of entry of uropathogens to catheterized urinary tract
Figure (3): Catheterisation of female and male urethera
Figure (4): A strip of urine dipstick with Nitrite and Leukocyte esterase marked
Figure (5): Unused dipstick strip above and positive one for nitrite and leukocyte esterase below
Figure (6): Different growth on CLED agar with Andrade's indicator
Figure (7): API strip for <i>E-coli</i> 70
Figure (8): Muller-Hinton agar plate showing ESβLs production
Figure (9): Catheter urine sample culture results of the study cases
Figure (10): Rate of detection of different pathogens among the significant culture results
Figure (11): ROC diagram with three ROC curves representing performance quality of microscopic ex of Gram stained films and wet preparations made from centrifuged and non centrifuged urine

Figure (12): ROC diagram with two ROC curves
representing different levels of performance quality
showing high specificity for nitrite and high sensitivity for
leukocyte esterase82
Figure (13): ROC diagram with three ROC curves representing different levels of performance quality87
Figure (14): Antimicrobial susceptibility of the 19 <i>E. coli</i> isolates
Figure (15): Results of different antimicrobial sensitivity tests of <i>Klebsiella pneumoniae</i> isolates89
Figure (16): Results of different antimicrobial sensitivity tests of <i>Proteus mirabilis</i> isolates90
Figure (17): Results of different antimicrobial sensitivity tests of <i>Pseudomonas aeruginosa</i> isolates91
Figure (18): Results of different antimicrobial sensitivity tests of <i>Eterococci</i> isolates92

Introduction and Aim of the Work

Introduction

Urinary tract infection (UTI) is the most common nosocomial infection and constitutes about (30% - 40%) of all hospital acquired infection. Most of these infections follow urinary catheterization. Some studies found higher risk of hospital mortality in patients with catheter-associated UTI (*Rosenthal et al.*, 2003). Many risk factors have been demonstrated to increase the risk of catheter associated UTI. These include prolonged catheterization, other infections, diabetes, malnutrition, renal failure, placement of the drainage tube above the level of the bladder, female gender and old age (*Tambyah 2004*).

As antimicrobial resistance rates increase, there is growing concern about inappropriate and unnecessary antimicrobial use (*Fahey et al.*, 2003). Suspected UTI is one of the most common indications for antimicrobial use, with much prescribing of antimicrobials based on clinical symptoms and signs without confirmation by culture (*Andrew et al.*, 2006). The most common organisms infecting the urinary tract include *E.coli*, *Klebsiella pneumoniae*, *Proteus species*, *Staphylococcus species and Pseudomonas* (*Wagenlehner*, *et al.*, 2006). The emergence of multidrug-resistant extended-spectrum β-lactamase-producing Gram negative organisms emphasizes the increasing risks associated with unnecessary antimicrobial use (*Colodner et al.*, 2004).

The frequency of UTI generates a significant workload for the laboratory. Most specimens sent to a laboratory will show no evidence of infection when tested, and consequently, there has been considerable interest in ways to screen out specimens before processing them for culture by a rule-out test strategy as microscopic examination of urine and dipstick urinalysis testes (*Smith et al.*, 2003).

Aim of the Work

This work aimed at evaluating the performance of simple screening methods as microscopic urine analysis and dipstick tests for urine leukocyte esterase and nitrite in order to use the negative results of these methods as rule out tests to exclude catheter associated urinary tract infections in hospitalized patients in Kobry Elkobah Military Hospital. Moreover, the antimicrobial profile of the isolated pathogens was determined to help guiding empirical antimicrobial therapy.

Review of Literature

