Endometriosis-stem cell evaluation

A Thesis
Submitted for partial fulfillment of the master degree in obstetrics & gynecology

BY

Ahmed Mouner Ibrahim

(M.B.BCH,)
Resident of Obstetrics & Gynecology
Al-Azhar University(Assuit)
Under supervision of

Prof. Mahmoud Sayed El Edessy

Professor and head of department of Obstetrics & Gynecology

Faculty of medicine

AL-Azhar University(Assuit)

Prof. Magdi Abd El Mohsen Olama

Professor of Obstetrics & Gynecology

Faculty of medicine

AL-Azhar University(Assuit)

Assistant Prof. Dr.Hala Naguib Hosni

Assissant Professor of pathology department Faculty of Medicine, Cairo University

Dr. Mohamad Abd El Satar Mohamad

Lecturer of Obstetrics & Gynecology

Faculty of medicine

AL-Azhar University(Assuit)

Faculty of medicine AL-Azhar University (Assuit) 2012-1433

Acknowledgement

A special tribute and appreciation to:

Prof. Dr. Mahmoud Sayed El-edessy

Professor of obstetrics and gynecology, faculty of medicine, Al-Azhar university for his active guidance and support all through the whole work and for dedicating much of his precious time to accomplish this work.

I would like also to express my deep thanks to:

Prof. Dr. MagdyAbd El Mohsen Olama

Professor of obstetrics and gynecology, faculty of medicine, Al-Azher university for his meticulous supervision, generous help, sincere advice and his great effort.

I would like to express my sincere gratitude to:

Prof. Dr. HalaNaguib Hosni

Assistant Professor of Pathology, Faculty of Medicine, Cairo University for her great support and continuous encouragement pushed me to produce good valuable work.

I would like also to express my deep thanks to:

Dr. Mohammad Abd El satar

Lecturer of obstetrics and gynecology faculty of medicine AL-Azhar university (Assuit) for his meticulous supervision, his great support and sincere advice.

Ahmed Mouner

Contents

Title	Page
Introduction	1
Aim of the Work	4
Embryology of the female genitourinary tract	5
Stem cell biology	15
Types of human stem cells	17
Formation and development of empryonic stem cells	28
Endometriosis	30
Risk factors	35
Classification and location of endometriosis	
Stem cells as pathophysiology of endometriosis	51
The role of stem cells in endometriosis	55
Patient and method	
Results	
Discussion	95
SUMMERY	
Conclusion	
Recommendation	
Reference	
Arabic summery	1

EList of Abbreviations &

	Г
AMH	anti-Müllerian hormone
AFC	American Fertility Society
ASRM	American Society for Reproductive Medicine
ASCs	Adult stem cells
BMHSCs	Bone marrow hematopoietic stem cells
CA125	Cancer antigen 125
CA19-9	Cancer antigen19-9
COX-2	Cyclooxygenase type 2
CS	Cesarean section
E2	Estradiol
EBs	Embryoid bodies
EC	Embryonal carcinoma
EISS	International stem cell score
EG	Embryonic germ cell
EPC	Endothelial progenitor cells
ESCs	Embryonic stem cells
HESCs	Human embryonic stem cells
HLA	Human leukocyte antigen
HSC	Hematopoietic stem cells
IL-1	Interleuken-1
IL-6	Interleuken-6
IL-8	Interleuken-8

EList of Abbreviations &

LIF	Leukemia inhibiting factor
IVF	Invitro fertilization
M Ab	Monoclonal antibodies
MCP-1	Monocyte chemoattractant protein-1
MSCs	Mesenchymal stem cells
NSAIDs	Nonsteroidal anti-inflammatory drugs
NOD	Non-obese diabetic
NK	Natural killer
PG	Primordial germ cell
OSE	Ovarian surface epithelium
PCR	Polymerase chain reaction
PDMCs	Placenta-derived multi-potent cells
PGE2	Prostaglandin E2
RANTES	Regulated on activation, normal T-cell expressed and secreted
RCT	Randomized controlled trials
SC	Stem cell
SCID	Severe combined immunodeficiency
SP	Side population
SSEA	Stage specific embryonic antigen
TA	Transit amplifying cells
TCDD	Tetrachlorodibenzo-p-dioxin
TNF	Tumor necrosis factor
UGS	Urogenital sinus
UCB	Umbilical cord blood

EList of Abbreviations &

VEGF	vascular endothelial growth factor

List of figures

Figure number	Title	Page
Figure1	Development of the ovaries from the undifferentiated (indifferent) gonads	6
Figure 2	Pelvic descent of the ovary	7
Figure 3	The pelvic ligaments in the postnatal female.	9
Figure 4	Division of the cloaca and differentiation of the female lower genitourinary tract.	10
Figure 5	Differentiation of the female external genitalia	11
Figure 6	Anatomy of the vestibular glands and ducts	13
Figure 7	Diagram showing differentiation of the stem cells.	17
Figure 8	Hierarchy of stem cell differentiation	18
Figure 9	Endometriosis within a lower vertical midline incision scar (arrows)	45
Figure 10	Transvaginal sonogram demonstrating ovarian endometrioma.	46
Figure 11	Magnetic resonance images of an endometrioma	47
Figure 12	Below the irrigator tip, a red and white endometriotic lesion is seen on the pelvic peritoneum during laparoscopy	48
Figure 13	Bisected endometrioma showing a shaggy hemorrhagic lining.	49
Figure 14	Colonic endometriosis	50
Figure 15	Schematic showing the possible location of putative endometrial stem/progenitor cells	51
Figure 16	The location of putative progenitor/stem cells is identified in the basalis of the endometrium	54
Figure 17	Comparison between endometrial histopathological findings of endometrial biopsies of both groups	66
Figure 19	Endometrial stem cell scores found in studied groups	68

Figure20	Ovarian stem cell score findingsin both groups	69
Figure 21	correlation Stem cell scores found in endometrial and ovarian biopsies of patient group	70
Figure 22	correlation stem cell score findings of endometrial and ovarian biopsies of control group	71
Figure 23	Ovarian endometriotic cyst lined by multiple variable sized	72

	glands lined by cuboidal cell layer	
Figure 23	Ovarian endometriotic cyst lined by variable sized endometrial glands lined by cuboidal cell layer	72
Figure 24	Endometrial tissue showing mild OCT4 positivity of endometrial glands	73
Figure 25	tissue showing moderate focal OCT4 stem cell marker positivity of both endometrial glands and surrounding stroma	73
Figure 26	Endometrial tissue showing diffuse strong positivity of OCT4 stem cell marker immunohistochemical staining	74
Figure 27	Ovarian endometriotic cyst showing strong diffuse Oct3 stem cell marker positivity of its endometrial gland lining	74
Figure 28	Stem cell scores in cases which histopathology was Simple endometrial hyperplasia	75
Figure 29	Stem cell scores in cases which histopathology was Disordered proliferative endometrium	76
Figure 30	Stem cell scores in cases which histopathology was Secretory endometrium.	77
Figure 31	Stem cell scoring in cases which histopathology was Pill pattern atrophic endometrium.	78
Figure 32	Age distribution in group 1 according to EISS	79
Figure 33	Residence distribution in group 1 according to EISS	80
Figure 34	Social class distribution in group 1 according to EISS	81
Figure 35	Menarche distribution in group 1 according to EISS.	82
Figure 36	Cycle regularity distribution in group 1 according to EISS	83
Figure 37	differences between stem cell scoring in cases who had Chronic cervicitis	84
Figure 38	differences between stem cell scoring in cases that had cervical erosion	85
Figure 39	Women who had cervical stenosis at local examination of both groups	86
Figure 40	differences between stem cell scoring in cases who had lower abdominal pain	87
Figure 41	Women who had low back pain at clinical history of studied groups	88
Figure 42	differences between stem cell scoring in cases who had irregular cycle	89
Figure 43	differences between stem cell scoring in cases who had 1ry infertility at clinical history	90
Figure 44	differences between stem cell scoring in cases who had 2ry infertility	91

Figure 45	differences between stem cell scoring in cases who had infertility at risk factor	92
Figure 46	Differences between stem cell scoring in cases who had no children at risk factor	93
Figure 47	differences between stem cell scoring in cases who had RVF at risk factor	94

List of tables

Tables	Title	Page
number		
1	Revised Classification of Endometriosis	38
2	Endometrial International Stem cell score	61
3	Sociodemographic characteristics of the studied groups	62
4	clinical criteria characteristics of the studied groups	63
5	Local examination characteristics of the studied groups	64
6	Risk factor characteristics of the studied groups	65
7	Endometrial Histopathological findings of studied groups	66
8	Ovarian histopathological findings of studied groups.	67
9	comparison between endometrial stem cell score findings in both group	68
10	Comparison between ovarian stem cell score findings in both group.	69
11	Correlation Stem cell score findings of endometrial and ovarian biopsies of patient group.	70
12	Correlation Stem cell score findings of endometrial and ovarian biopsies of control group.	71
13	Stem cell scores in cases which histopathology were Simple endometrial hyperplasia.	75
14	Stem cell scores in cases which histopathology was Disordered proliferative endometrium.	76
15	Stem cell scores in cases which histopathology was Secretory endometrium	77
16	Stem cell scoring in cases which histopathology was Pill pattern atrophic endometrium.	78
17	Age distribution in group 1 according to EISS.	79
18	Residence distribution in group 1 according to EISS.	80
19	Social class distribution in group 1 according to EISS.	81
20	Menarche distribution in group 1 according to EISS.	82
21	Cycle regularity distribution in group 1 according to EISS.	83
22	women who had chronic cervicitis at local examination of studied groups.	84

23	Women who had cervical erosionat local examination of studied groups.	85
24	Women who had cervical stenosisat local examination of studied groups.	86
25	Women who had lower abdominal pain at clinical history of studied groups.	87
26	Women who had low back pain at clinical history of studied groups.	88
27	Women who had irregular cycle at clinical history studied groups	89
28	Women who had 1ry infertility at clinical history of studied groups.	90
29	Women who had 2ry infertility at clinical history of studied groups.	91
30	Women who had infertility at risk factor of studied groups.	92
31	Women who had no children at risk factor of studied groups.	93
32	Women who had RVF at risk factor of studied groups	94

Introduction

Introduction

Endometriosis is a chronic benign gynecological disease characterized by the presence of endometrial glands and stroma outside the uterine cavity. The consequences of endometriosis often include pelvic pain and infertility. The incidence of the disorder is between 6% and 10% of all women and 35–50% of women with pelvic pain and infertility (Sasson et al 2008).

The origin of endometriotic implants and the pathogenesis of endometriosis has long been an area of active investigation. Multiple hypotheses have been explored, including:

- Retrograde menstruation theory: This theory is the most widely accepted and postulates that endometriotic implants arise from retrograde menstruation of endometrial tissue through the fallopian tubes into the peritoneal cavity (Sampson et al 1927).
- Coelomic metaplasia theory: This theory proposes that endometriosis develops from metaplasia of the cells lining the visceral and abdominal peritoneum (Gruenwald et al 1942). Some undetermined stimulus is believed to induce metaplastic changes in the peritoneal lining, resulting in endometrial implants.
- Embryonic rest theory: This theory proposes that the presence of endometrial tissue when subjected to the appropriate stimulus.
- Lymphovascular metastasis theories: Sampson suggested that endometrial cells could spread to ectopic sites via lymphatic and hematogenous spread (Sampson et al 1927).

Although there is evidence for each theory, the clinical manifestation of endometriosis and the presence of endometrial tissue outside the uterine cavity is probably the end point of a combination of several aberrant biological processes. For instance, retrograde menstruation may occur in a woman with an improper immune response and a genetic predisposition to develop endometriotic lesions, possibly in the setting of an aberrant environmental milieu (Sasson et al 2008).

Briefly, the mechanisms required include attachment of endometrial cells to the pelvic peritoneum, invasion into the mesothelium, and survival and proliferation of the ectopic endometrial cells (Jensen et al 2010).

Stem cells, the endometrium, and endometriosis ectopic endometrial growth in the many models used for the study of endometriosis (Sasson et al 2008).

Leyendecker et al 2002. Showed that significantly more basalis layer was shed in the menstrual flow, suggesting an increased number of stem cells in this layer that can result in a propensity for endometriosis.

Endometriosis was generated experimentally by ectopic wild-type endometrial implantation in the peritoneal cavity of hysterectomized LacZ transgenic mice.

Stem cells are undifferentiated cells that have the ability to selfrenew as well as to produce more differentiated daughter cells (Gargett et al 2007). Broadly, they can be divided into two categories: embryonic and adult. Embryonic stem cells are found in the inner cell mass of the blastocyst. Adult stem cells, derived from postembryonic cell lineages, have been described in a number of different organ systems and have been best characterized in the hematopoietic system (Gargett et al 2007).

Embryonic and adult stem cells are classified by their ability to differentiate into cells of different cell lineages. Differentiation is defined as a change in cell phenotype because of expression of genes associated with cellular function rather than cell division.

Totipotent stem cells are fully undifferentiated and able to generate all embryonic germ layers (endoderm, mesoderm, and ectoderm) aswell as the extra-embryonic tissues (trophoblast, placenta, and extra-embryonic membranes); the zygote is representative of this cell. The embryonic stem cells, in turn, are pluripotent stem cells that lie along a spectrum of differentiation and can produce cells of all three germ layers, but not the extra-embryonic tissues. As stem cells undergo differentiation and their cell lineages become more restricted, they are described as multipotent because they can produce multiple cell types within the same germ cell lineage, or unipotent, differentiating into a single cell lineage (Trounson et al, 2006).

Adult stem cells reside in an anatomic structure called the niche (Li et al 2005). The stem cell niche is a microenvironment of surrounding support cells that signal to the stem cell population. The niche cells provide signals that maintain stem cells in an undifferentiated state, protecting them from differentiation, proliferation, and apoptotic cues.

Maintenance of the stem cell population requires cellular self-renewal, that is, the capacity to generate identical daughter cells, which can happen through asymmetric or symmetric division. In an asymmetric division, one stem cell produces an identical daughter cell and a more differentiated daughter, whereas in a symmetric division it produces two daughter stem cells or two transit amplifying (TA) progenitors. TA cells undergo repetitive cycles of cell divisions to increase in number while progressively acquiring markers of the differentiated cell type; consequently, they lose the ability for self-renewal.

The human endometrium of the uterus comprises the endometrial mucosal lining, which is a highly regenerative tissue. It is composed primarily of two cell types—the epithelial cells (luminal and glandular). And the supporting mesenchymal cells (stromal cells) as well as

endothelial cells and leukocytes (Kayisli, et al 2004). The endometrial—myometrial junction is irregular with no submucosal tissue to separate endometrial glandular tissue from the underlying smooth muscle of the myometrium (Uduwela, et al 2000).

Functionally, the endometrium is composed of two layers—the outer functionalis layer and the inner basalis layer. The functionalis, comprising the upper two thirds, is composed of dense glandular tissue surrounded by a loose connective stroma. The inner basalis layer rests on themuscular subendometrial myometrium and contains primarily the base of the glands, dense stroma, and large vessels. This layer serves as a germinal compartment for generating the new functionalis each month (Spencer et al 2005).

So, more researches are needed to find out the relation of these endometriotic cells and occurrence of endometriosis. Assessing of the presence of stem cells in the endometrium and endometriotic cells may be a clue to know more about the pathogenesis of endometriosis.