High-Sensitivity C - reactive protein Level: A Measure for Asthma Severity and Control in Egyptian Asthmatic Children

Thesis submitted For Fulfilment of *M.D. Degree* in Paediatrics

By

Sarah Ali Zenhom Mohamed Mahmoud Saleh (MB.BCh, M.Sc)

Supervisors

Prof. Dr. Mona Mostafa El Falaki

Professor of Paediatrics Faculty of Medicine Cairo University

Prof. Dr. Manal Mohamed Wagdy El Masry

Professor of Clinical Pathology Faculty of Medicine Cairo University

Dr. Aliaa Adel Ali

Assistant Professor of Paediatrics Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2013

ACKNOWLEDGEMENT

FIRST OF ALL, I WOULD LIKE TO RAISE MY HANDS AND THANK
GOD, WHO HELPED ME AND GAVE ME THE ENERGY AND PATIENCE TO
MAKE THIS WORK TO THE END.

I WILL ALWAYS BE EXTREMELY GRATEFUL AND THANKFUL TO PROFESSOR DOCTOR. MONA MOUSTAFA EL-FALAKI PROFESSOR OF PAEDIATRICS, FACULTY OF MEDICINE, CAIRO UNIVERSITY, FOR THE ATTENTION SHE GAVE TO THIS WORK FROM THE VERY BEGINNING TO THE VERY END OF IT, AND FOR HER SUPPORT, SCIENTIFIC SUPERVISION AND GIVING ALL HER PROFESSIONAL EXPERIENCE THROUGHOUT THE WHOLE WORK.

I WOULD LIKE TO EXPRESS MY SINCERE APPRECIATION AND
RESPECT TO PROF. DOCTOR. MANAL ELMASRY PROFESSOR OF CLINICAL
PATHOLOGY, FACULTY OF MEDICINE, CAIRO UNIVERSITY, FOR HER
INSTRUCTIVE GUIDANCE AND GREAT EFFORT.

I FEEL GREATLY INDEBTED AND THANKFUL **DR**. **ALIAA ADEL ALI**ASSISSTENT PROFESSOR OF PAEDIATRICS, FACULTY OF MEDICINE,
CAIRO UNIVERSITY AND FOR HER GREAT EFFORT, DEEP ASSISTANCE
AND CONSTRUCTIVE NOTES THROUGHOUT THIS STUDY.

MY THANKS TO OUR PULMONOLGY UNIT STAFF PATIENTS AND NURSES, WITHOUT THEIR ASSISSTANCE THIS WORK WOUDN'T HAVE COME TO THIS RESULT.

SPECIAL THANKS AND GRATITUDE ARE EXTENDED TO MY FAMILY AND MY HUSBAND FOR THEIR PRICELESS HELP AND DEEP LOVE.

TO MY BELOVED FATHERI HOPE YOU ARE PROUD OF ME NOW....

TILL WE UNITE AGAIN IN A BETTER PLACE......

`ABSTRACT

Asthma is the most common chronic inflammatory disease in

childhood and some reports have demonstrated systemic inflammation.

The relevance of high sensitivity assays for C-reactive protein (Hs-CRP),

which are known to be a sensitive marker of low-grade systemic

inflammation, has not been fully studied in childhood asthma.

This cross sectional case–control study aimed at evaluating serum

Hs-CRP in two groups of asthmatic children, steroid inhaling and steroid

naive patients with special emphasis on the relation of measured

parameter to different clinical (severity, smoking, family history, other

atopic manifestations) and laboratory data (IgE-peripheral blood

eosinophil count) and pulmonary function tests. Ninety eight asthmatic

Children aged 2yr to 12yr and matched control group of 38 children were

recruited for the present study.

The Serum Hs-CRP analysis of patients and controls revealed a

non significant statistical difference. The relation between the serum

analysis of Hs-CRP in the two asthmatic groups was statistically

insignificant.

A statistical significant difference was found between the HsCRP

and the result of the pulmonary function tests, but no statistical significant

difference was found between HsCRP and asthma severity.

In conclusion HsCRP can be used for indirect detection of airway

inflammation, and may be also used to assess response to steroid

treatment in asthmatic children but cannot be used as a marker for

assessment of different grades of asthma severity.

Key Words: Asthma -HsCRP- Severity.

CONTENTS

List of Abbreviations	
List of Tables]
List of Figures	
Introduction and Aim of the Work	
Review of Literature	
• Chapter I: Bronchial Asthma	
• Chapter II: Highly Sensitive C-reactive protein (Hs-CRP)	
Patients & Methods	
Results	
Discussion	
Conclusion & Recommendations	
Summary	-
References	
Arabic Summary	

Abbreviations

ACE Angiotensin-converting enzyme

ACT Asthma control test
ADRB2 β2 adrenergic receptor

AEC Absolute Eosinophilic Count
AHR Airway hyperresponsivness
ALOX5 5-lipoxygenase5-lipoxygenase
ANOVA One way analysis of variance
API Asthma predictive index
ASM Airway smooth muscle

BA Bronchial asthmaBHR Bronchial hyperresponsiveness

BMI Body mass index

BTPS Body temperature, barometric pressure and saturated with water

vapour conditions

BTS British Thoracic Society

COPD Chronic obsrtructive lung disease

CRP C-reactive protein

C_{rs} Respiratory system compliance

CXR Chest X-ray

CysLT1 Cysteinyl leukotriene type 1

Da Dalton: is the standard unit that is used for indicating mass on an

atomic or molecular scale (atomic mass)

ECM Extra cellular matrix
ED Emergency department
EEL End expiratory level
EGF Epidermal growth factor
EIA Exercise-induced asthma

EPR-3-NAEPP Expert Panel Report 3 of the National Asthma Education and

Prevention Program

ERS The European Respiratory Society
ETS Environmental tobacco smoke

FcεRI High-affinity receptor FcγR Immunoglobulin receptors

FEF25-75 Forced expiratory flow between 25% and 75% expired volume

FeNO Fractional exhaled NO

FEV1 Forced expiratory volume at 1 second

FRC Functional residual capacity

FRCp Plethysmographic Functional Residual Capacity

FVC Forced vital capacity

GERD Gastroesophageal reflux disease **GINA** Global Initiative for Asthma

GM-CSF Granulocyte–macrophage colony-stimulating factor

H2O2 Hydrogen peroxide
HRVC Human rhinovirus C
Hs-CRP High- sensitive CRP
IC Immobilized complex

ICAM-1 Intercellular adhesion molecule 1

ICS Inhaled corticosteroids

IFN- α interferon α

IgEImmunoglobulin EIgGImmunoglobulin G

IL Inteleukin IL-2 Interleukin -2

IOM Institute of medicine in Washington

IOS Impulse oscillometry

ITAM Immunoreceptor tyrosine-based activation motif
ITIM Immunoreceptor tyrosine-based inhibition motif

kPa Kilo Pascal

LABA Long-acting β2-agonist

LRTIs Lower respiratory tract infections
LTA4 Leukotriene epoxide hydrolase

LTB4 Leukotriene B4

LTC Cysteinyl-leukotrienes LTC4 Cysteinyl leukotrienes C4

MDCs Macrophage-derived chemokines

NO Nitric oxide

PC Phosphatidylcholine

PDGF Platelet derived growth factor

PEF Peak expiratory flow
PEFR Peak expiratory flow rate
PFT Pulmonary function tests

PGD2 Prostaglandin D2
P_j Jacket pressure
PNT Pneumotachograph

PT Pneumotach

PUFAs Polyunsaturated fatty acids
R_{rs} Respiratory system resistance
RSV Respiratory syncitial virus

RTC The tidal rapid thoracoabdominal compression

RV Residual volume

RV/TLC Residual volume to total lung capacity

SAA Serum amyloid ASABA Short acting b2 agonistSAP Serum amyloid P component

sm- 22 Transgelin

sm-MHCSmooth muscle myosin heavy chainsm-MLCKSmooth muscle myosin light chain kinaseSPSSStatistical Package for the Social Science

SPT Skin-prick test

sRaw Specific airways resistance **sRaw** Specifc Airway Resistance

TARCs Thymus and activation-regulated chemokines and

TGF-b Transforming growth factor-b

Th1 T helper 1 T-helper 2

TMB Tetramethylbenzidine

TNF-α Tumour necrosis factor alpha

 $\begin{array}{ll} T_{rs} & \text{Time constant of the respiratory system} \\ V'_{maxFRC} & \text{Maximal flow at functional residual capacity} \end{array}$

VB Box volume

VCAM-1 Vascular-cell adhesion molecule 1 VEGF Vascular endothelial growth factor

VOCs Volatile organic compounds WHO World Health Organization

List of Tables

Table (1)	Factors influencing the development and expression of asthma	9
Table (2)	Chromosomal localization and possible function of candidate genes in	15
	asthma, and related phenotypes	
Table (3)	Questions to consider in the diagnosis of asthma	60
Table (4)	Asthma predictive index	64
Table (5)	Modified asthma predictive index mAPI	65
Table (6)	Classification of asthma severity by clinical features and pulmonary	73
	function tests	
Table (7)	Levels of asthma control	74
Table (8)	Drug Therapy	83
Table (9)	Dosage of inhaled Corticosteroids (ICS)	86
Table (10)	Assessment of severity of asthma exacerbations	95
Table (11)	Acute phase reactants (APR)	99
Table (12)	Basic demographic and clinical data of patients included in the present study	134
Table (13)	Distribution of patients included in the study regarding age, age of onset of asthma and duration of asthma	135
Table (14)	Distribution of age among patients and controls	136
Table (15)	Distribution of sex among patients and controls	136
Table (16)	Distribution of symptoms among studied patients	137
Table (17)	Range and mean values of IgE level, HsCRP and total eosinophilic count of patients included in the present study	145
Table (18)	The frequency of attacks of the patient's symptoms in relation to IgE level.	146
Table (19)	Pattern of symptoms in relation to IgE levels.	147
Table (20)	Patients levels of IgE and the seasonal variation of their symptoms.	148
Table (21)	The classification of severity (GINA 2010) in the studied patients in relation to IgE.	149
Table (22)	Relation between level of serum IgE and presence of atopic manifestations.	149
Table (23)	IgE levels in relation to pulmonary function tests	150
Table (24)	IgE levels and Asthma control test	150
Table (25)	Distribution of family history in relation to IgE	151
Table (26)	Frequency of attacks of the studied group symptoms in relation to the AEC.	152
Table (27)	The classification of severity among the studied subjects in relation to AEC.	153
Table (28)	Relation between the AEC and presence of atopic manifestations.	154
Table (29)	Relation between the AEC and IgE	154
Table (30)	AEC and pulmonary function tests	155
Table (31)	AEC in relation to the Asthma control test	155
Table (32)	Shows the Hscrp level in patients and controls	156
Table (33)	Pattern of symptoms in relation to HsCRP levels.	157
Table (34)	The frequency of the attacks of the symptoms in relation to HsCRP level.	158
Table (35)	The classification of severity among the studied subjects	159
Table (36)	HsCRP result in relation to presence of atopic manifestations.	160
Table (37)	Relation between the median values of total serum IgE, the absolute eosinophilic count and the result of HsCRP	160
Table (38)	HsCRP levels and pulmonary function tests	162

Table (39)	HsCRP levels and Asthma control test	163
Table (40)	Relation between the frequency of attacks and HsCRP, IgE, AEC and ACT score	165
Table (41)	Relation between the pulmonary functions results and HsCRP, AEC, ACT and the IgE	166
Table (42)	Number and percentage of patients included in the study	168
Table (43)	Shows the mean \pm (SD) and median (range) age of the two studied groups	169
Table (44)	Family history of allergic diseases and the atopic manifestations among the two studied groups	169
Table (45)	The levels of HsCRP among the two studied groups	170
Table (46)	HsCRP level measured in the two studied groups	170
Table (47)	Shows the number and percentage of pulmonary function tests done in the two studied groups	171
Table (48)	Level of absolute eosinophilic count and total serum IgE in the two studied groups	171
Table (49)	Shows the mean (±SD) and range of AEC and IgE among the two studied groups	172
Table (50)	Shows the frequency of attacks in the two groups	174
Table (51)	ACT score among the two studied groups	174
Table (52)	Classification of severity in the two groups	174
Table (53)	Correlation between the age of patients and laboratory results	176
Table (54)	Correlation between HsCRP, laboratory results and ACT score	178
Table (55)	Correlation between IgE and eosinophilia	180

List of Figures

Fig.	(1)	Asthma Prevalence and Mortality	8
Fig.	(2)	Hypothesized associations of genetic, intrauterine, and perinatal risk factors	21
		with asthma onset and severity in infancy	
Fig.	(3)	Innate immune receptor gene expression (GM ± CI) among farm and	30
		nonfarm children in the PARSIFAL study	
Fig.	(4)	Cytokine balance	31
Fig.		Immune and inflammatory mechanisms and asthma progression	35
Fig.	(6)	The Asthmatic Airways	37
Fig.	(7)	T-cell tracking in Bronchial asthma	41
Fig.	(8)	Role of eosinophils in bronchial asthma	44
Fig.	(9)	Differential cell counts in induced sputum from subjects with severe asthma	45
Fig.	(10)	Pathogenesis in bronchial asthma	53
Fig.	(11)	Role of bronchial hyperresponsiveness in asthma etiology	54
Fig.	(12)	Summary of step 3 in adults and children>5 years: Add-on therapy	89
Fig.	(13)	Management Approach Based On Control for Children Older than 5 Years,	92
		Adolescents and Adult	
Fig.	(14)	Asthma management approach based on control for children 5years and	93
		younger	
Fig.	(15)	Management of asthma exacerbations in acute care setting	96
Fig.	(16)	Overview of the systemic acute-phase response	98
Fig.	(17)	Crystal structure of C-reactive protein complexed with phosphocholine	103
Fig.	(18)	Model of the interaction of CRP with C1q	104
Fig.	(19)	Function of C - reactive protein	106
Fig.	(20)	Role of CRP in bronchial asthma	109
Fig.	(21)	Photo showing Jaeger Master Screen Spirometry system	124
Fig.	(22)	Photo showing a jaeger Master Screen Baby Bodyplethysmography system	131
Fig.	(23)	Age distribution of patients included in the present study.	135
Fig.	(24)	Sex distribution among the studied patients	136
_	(25)	Distribution of residence among the studied patients	138
_	(26)	Family history of asthma among the studied patients	138
_	(27)	Seasonal variation of symptoms among the studied patients	139
_	(28)	Severity classification (GINA 2010) among the studied patients	140
	(29)	Pattern of symptoms among the studied patients	140
_	(30)	Atopic manifestations among the studied patients	141
	(31)	Other atopic manifestations among the studied patients	141
	(32)	Precipitating factors of asthma among the studied patients	142
_	(33)	Shows the types of pulmonary function tests performed by patients	142
	(34)	Shows the result of pulmonary function tests of the studied patients	143
0	(35)	Shows the absolute eosinophilic counts among the patients	143
_	(36)	Shows the total serum IgE result among patients	144
_	(37)	Shows the result of HsCRP among patients	144
_	(38)	Shows the percentage of patients with controlled and uncontrolled asthma	145
_	(39)	Relation between median values of HsCRP of cases and controls	156
_	(40)	Relation between HsCRP levels and IgE	161
_	(41)	Relation between HsCRP levels and AEC	161
_	(42)	Relation between the mean HsCRP and disease severity	163
_	(43)	Relation between the mean AEC and the disease severity	163
Fig.	(44)	Relation between the mean IgE and the disease severity	164

Fig. (45)	Relation between the ACT score and disease severity	164
Fig. (46)	Relation between the AEC and frequency of attacks	165
Fig. (47)	Relation between the ACT score and the PFT	167
Fig. (48)	The percentage of patients included in the study as regard their treatment	168
Fig. (49)	Sex distribution in the two studied groups	169
Fig. (50)	Seasonal variations of symptoms in group A and group B.	173
Fig. (51)	The pattern of symptoms in group A and group B.	173
Fig. (52)	Classification of severity in the two groups	175
Fig. (53)	Correlation between the age of patients and AEC	176
Fig. (54)	Correlation between the age of patients and IgE	177
Fig. (55)	Correlation between the age of patients and HsCRP	177
Fig. (56)	Scatter distribution showing the correlation between HsCRP and IgE	178
Fig. (57)	Scatter distribution showing the correlation between HsCRP and AEC	179
Fig. (58)	Scatter distribution showing the correlation between HsCRP and ACT	179
	SCORE	
Fig. (59)	Scatter distribution showing the correlation between IgE and absolute eosinophilic count in the studied cases	180

Introduction

Asthma is a heterogeneous and multifactorial disease manifested as episodes of wheezing, coughing, and shortness of breath particularly at night. Both family-based and twin studies indicate that asthma is a complex genetic disorder. Multiple genetic and environmental factors are also known to modulate the clinical expression of the disease and its associated phenotype bronchial hyperresponsiveness, atopy, and elevated IgE (*Patrick et al.*, 2010)

Bronchial asthma is prevalent worldwide, especially in developed countries where its prevalence is increasing to epidemic proportions (*Chen and Shi*, 2006).

Asthma comprises a range of heterogeneous phenotypes that differ in presentation, etiology and pathophysiology. The risk factors for each recognized phenotype of asthma include genetic, environmental and host factors. Although a family history of asthma is common, it is neither sufficient nor necessary for the development of asthma (*Burke et al.*, 2003).

Asthma is characterised by airway hyperresponsiveness and inflammation, in which various cells (such as eosinophils, neutrophils, macrophages and T-lymphocytes), cytokines and mediators play a role. Beside local inflammation, systemic inflammation is present in asthma, as shown by increased levels of plasma fibrinogen and serum amyloid A (*Jousilahti et al.*, 2002). Thus Hs-CRP could theoretically also be a useful tool for detecting systemic inflammation in asthma; indeed, an association between serum hs-CRP level and severity of asthma has been suggested (*Sa'vykoski et al.*, 2004).

Increased Hs-CRP levels may be associated with allergic inflammation, particularly eosinophilic inflammation, and the degree of

airway obstruction in asthmatic patients. It is an important new marker that can help physicians care for asthmatic patients (*Fujita et al.*, 2007).

Also, low-level inflammation, as indicated by increased Hs-CRP serum concentrations, has been described in both chronic obstructive pulmonary lung diseases (COPD) and asthma (*Tilemanna et al, 2011*).

In asthma, serum Hs-CRP measurement is noninvasive and easier than measurement in induced sputum or bronchoalveolar lavage fluid. Therefore, Hs-CRP might be a useful clinical marker of eosinophilic airway inflammation in asthma and might assist in the clinical management of the disease (*Fujita et al.*, 2007).

Aim of work

The aim of the present study is to evaluate the serum HsCRP levels in two of asthmatic children (group A=steroid inhaling patients; group B=steroid naive asthmatic patients) through a case-controlled study and to assess its correlation to clinical (age, age of onset, sex, duration, severity, asthma control), laboratory (total serum IgE, absolute eosinophilic count) and pulmonary function parameters