Potential role of Ultraviolet Radiation therapy in ameliorating the pathogenesis of Relapsing Remitting Multiple Sclerosois

THESIS Submitted for partial fulfillment of M.Sc. Degree in Neuropsychiatry

By

Wael Mahmoud Ezzat Ibrahim

Demonstrator of Neurology Kasr Alainy Faculty of Medicine – Cairo University

Supervised by

Prof. Shereen Fathi Sheir

Professor of Neurology – Cairo University

Ass.Prof. Fatma Mohamed Taha

Ass.Professor of Biochemistry - Cairo University

Dr. Abdelazim Mohammed Reda

Lecturer of Neurology – Cairo University

Faculty of medicine Cairo University 2014

الدور العلاجى المحتمل للأشعة فوق البنفسجية لتحسين التسبب في التصلب المتناثر ذو الطبيعة الإنتكاسية

رسالة مقدمه من الطبيب / وائل محمود عزت إبراهيم معيد الامراض العصبيه (جامعة القاهرة)

توطئة للحصول على درجة الماجيستير في الأمراض العصبيه والنفسية

تحت إشراف

الأستاذة الدكتورة / شيرين فتحى شعير أستاذ الأمراض العصبيه كلية الطب - جامعة القاهرة

الأستاذة الدكتورة / فاطمة محمد طه أستاذ مساعد الكيمياء الحيوية كلية الطب - جامعة القاهرة

الدكتور / عبد العظيم محمد رضا مدرس الأمراض العصبية كلية الطب – جامعة القاهرة

كلية الطب - جامعه القاهرة

Acknowledgement

Praise to ALLAH, Lord of Worlds, and may His blessing and peace be upon Mohamed, his servant and his messenger.

First of all, I am deeply thankful to GOD by the grace of whom this work was possible.

It's my pleasure to express my deepest gratitude and sincere thanks to **Prof. Dr. Shereen Fathi Sheir**, Professor of Neurology, Faculty of Medicine, Cairo University, for her generous concern, sincere supervision, valuable suggestions and cooperation, continuous advice and support, saving no effort or time in reading each word in this work, To her I will always grateful.

My deepest gratitude, Appreciations and thanks to **Dr. Fatma Mohamed Taha**, Assist professor of Biochemistry, Faculty of Medicine, Cairo University, for her sincere supervision, cooperation and continuous support throughout this work.

I wish also, to express my sincere gratitude and thanks to **Dr. Abdelazim Mohammed Reda**, Lecturer of Neurology, Faculty of Medicine, Cairo University, for his kind supervision, sincere encouragement, valuable advices and instructions throughout this work.

I would like to express my deep thanks and gratitude to **Prof. Dr. Aya Farouk**, professor of Neurophysiology, Faculty of Medicine, Cairo University, **Dr. Neveen ElFayoumy**, Assist professor of Neurophysiology, Faculty of Medicine, Cairo University **Dr. Marwa Shalaby**, Demonstrator of Neurophysiology, Faculty of Medicine, Cairo University, **Dr. Yosra Abdallah**, Resident of Neurophysiology, Faculty of Medicine, Cairo University for continuous guidance and valuable suggestions in this work.

I would like also to express my thanks and appreciation to my father **Prof. Dr. Mahmoud Ezzat** for his continous encouragement and support, I ask god a happy and healthy life for him. And I wish to express my deepest appreciation to my mother and my brothers for the continuous support which make me indebted to them all my life.

Last but not, least I would like to express my gratitude to my colleagues in Neurology Department, Faculty of Medicine, Cairo University and everyone who helped me to complete this work.

Wael Mahmoud Ezzat

CONTENTS

List of abbreviations	i
List of tables	v
List of figures	vii
Abstract	X
Introduction	. 1
Aim of the work	4
Review of literature	
1- Chapter I: Pathophysiology and Etiology of Multiple	
Sclerosis	5
2- Chapter II: Diagnosis of multiple sclerosis	29
3- Chapter III: Role of Vitamin D & UVR therapy in Multiple	e
Sclerosis	56
Patients and methods	. 92
Results	115
Discussion	160
Summary and conclusion	172
Recommendations	178
References	179
Appendices	
Arabic summary	

1,25(OH)D 1,25-dihydroxy cholecalcifirol

1-OHase 1 alpha -hydroxylase

25 hydroxy cholecalcifirol 25(OH)D

ADAM A disintegrin and metalloproteinase domain

AMP Adenosine monophosphate

Analysis of variance **ANOVA**

APCs Antigen presenting cells Adenosine triphosphate **ATP**

American urological association **AUA**

Blood-brain barrier **BBB**

Brain-derived neurotrophic factor **BDNF** British medical research council **BMRC**

CBC Complete blood count

Chemokine C-motif ligand CCL CD Clusters of differentiation CH Contact hypersensitivity

CLIA Chemiluminiscent enzyme immunoassay

CMV Cytomegalovirus

CNS Central nervous system Cerebrospinal fluid **CSF**

CVS Cardio-vascular stroke

Chemokine (C-X-C Motif) ligand **CXCL**

DC Dendritic cells

Deoxyribonucleic acid DNA

Delayed type hypersensitivity **DTH**

Diffusion weighted \mathbf{DW}

EAE Experimental allergic encephalomyelitis

EBV Epstein-barr virus

EDSS Expanded disability status scale

ELISA Enzyme-linked immunosorbent assay

Fas Tumor necrosis factor receptor superfamily member 6

FLAIR Fluid attenuated inversion recovery

GH Growth hormone

GM Gray matter

HC Healthy control

HHV Human herpes virus

HIV Human immunodeficiency virus

HLA Human leukocyte antigenHRP Horseradish peroxidase

ICAM-1 Intracellular adhesion molecule-1

ICARS International cooperative ataxia rating scale

IFN Interferon

IGF Insulin-like growth factor

Igs Immunoglobulins

IL Interleukin

IM Immunomodulatory

iNOS Inducible nitric oxide synthase

IU International units

JNK c-Jun N-terminal kinase

LFA-1 Leukocyte functional antigen

LL Lower limb

MAP kinase Mitogen-activated protein kinase

MAS Modified ashworth scaleMBP Myelin basic protein

MCP Monocyte chemotactic protein

MED Minimum erythema dose

MHC Major histocompatibility complex

MICARS Modified international cooperative ataxia rating scale

MMF Mycophenolate mofetilMMPs Matrix metalloproteinases

MMSE Mini mental state examination

MO Monocyte

MP Methyl prednisolone

MRC Medical research council

MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

MS Multiple sclerosis

MSH Melanocyte stimulating hormone

NG2 Neural glia antigen 2
NGM Normal grey matter
NKT Natural killer T cell
NMO Neuromyelitis optica

NO Nitric oxide

OCB Oligoclonal band

OCT Optical coherence tomography

O.D Optical densit

OPC Oligodendrocyte precursor cells
PET Positron emission tomography
PMN Polymorphnuclear neutrophils

PPMS Primary progressive multiple sclerosis

PTH Parathyroid hormone
PTHrP PTH related peptide

QoL Quality of life

RANK Receptor activator nuclear factor-Kb

RANKL Receptor activator nuclear factor-Kb ligand

RANTES Regulated upon activation, normal T-cell expressed, and

secreted

RNA Ribonucleic acid
ROI Regions of interest
ROM Range of motion

RORγ Retinoid-related orphan receptor gamma

ROS Reactive oxygen species

RRMS Relapsing remitting multiple sclerosis

SD Standard deviation

SDMT Symbol digit modalities test
SHPT Secondary hyperparathyroidism

SPECT Single photon emission computerized tomography

SPMS Secondary progressive multiple sclerosis

SPSS Staistical package version 12
TGF-β Transforming growth factor beta

Th1 T helper 1
Th2 T helper 2

TLR Toll-like receptors

TNF-α Tumor necrosis factor-A

TRAF-6 Tumor necrosis factor receptor associated factor-6

TRAIL Tumor necrosis factor related apoptosis including ligand

Treg Regulatory T cell (suppressor T cell)

TYK2 Tyrosine kinase 2
UCA Urocanic acid
UL Upper limb

UVR Ultraviolet radiation

VCAM-1 Vascular cell adhesion molecule

VDR Vitamin D receptorsVEP Visual evoked potentialVLA-4 Very Late antigen-4

WHO World health organization

List of tables

Table (1)	Mechanisms of demyelination in multiple sclerosis.	12
Table (2)	Histopathological patterns in MS	15
Table (3)	Risk of developing multiple sclerosis according to the relationship to a multiple sclerosis patient.	30
Table (4)	Prognostic factors in multiple sclerosis	48
Table (5)	The Mean age of patients in group I and II	116
Table (6)	The sex distribution of patients in group I and II.	116
Table (7)	The mean duration of illness of patients in group I and II	118
Table (8)	The mean number of attacks of patients in group I and II	118
Table (9)	group I pre and post UVR therapy patients	120
Table (10)	The median scores of different clinical scales in group I pre and post UVR therapy patients	122
Table (11)	The mean number of MRI lesions in pre and post UVR therapy patients	123
Table (12)	The mean values of VEP (amplitude & latency) and H-reflex (latency & H/M ratio) among group I pre and post UVR therapy patients	127
Table (13)	Means of serum 25(OH)cholecalcifirol among group I pre, post 1m & post 3m UVR therapy patients.	130
Table (14)	The results of clinical examination among group II and group I (post) UVR therapy patients	132
Table (15)	The median scores of different clinical scales in group II and group I (post) UVR therapy patients	134

Table (16)	The mean number of MRI lesions between group II and group I (post) UVR therapy	136
Table (17)	patients	139
Table (18)	The serum 25(OH)cholecalcifirol between group II and group I post(1m & 3m) UVR therapy patients.	143
Table (19)	The mean number of new attacks among group II and group I (post) UVR therapy patients	144
Table (20)	The mean serum 25 hydroxy-cholecalcifirol between group I and group II patients	146
Table (21)	The serum 25 hydroxy-cholecalcifirol between male & female patients	150
Table (22)	Comparing the mean value between Diff-D1 and Diff-D2.	151
Table (23)	Showing correlation between Diff-D1 and Diff-D2 using Spearman's rho method	151
Table (24)	P-value of Diff-D1 and Diff-D2 across males and females.	152
Table (25)	Showing correlation between Diff-D1 and Diff-D2 with different rating scales (post) using Spearman's rho method	153
Table (26)	Showing correlation between Diff-D1 and Diff-D2 with different neurophysiological studies using Spearman's rho method	154
Table (27)	Showing correlation between Diff-D1 and Diff-D2 with number of new attacks using Spearman's rho method.	155
Table (28)	Showing correlation of Diff-D1 between all neurophysiological studies with all rating scales using Spearman's rho method	156
Table (29)	Showing correlation of Diff-D2 between all neurophysiological studies with all rating scales using Spearman's rho method	158

List of figures

Fig. (1)	Various factors influencing the onset of MS	9
Fig. (2)	The role of immune system in MS pathogenesis	20
Fig. (3)	Cellular contributions to MS	21
Fig. (4)	Schematic diagram of the mitochondrial	23
	respiratory chain located in the inner	23
	mitochondrial membrane	
Fig. (5)	Flow chart showing the stages in the diagnosis	42
	of multiple sclerosis (MS) leading to a	
	confirmed diagnosis	
Fig. (6)	RR MS with partial recovery	43
Fig. (7)	RRMS with complete recovery	44
Fig. (8)	PP MS without Plateaus	45
Fig. (9)	PP MS with temporary improvement	45
Fig.(10)	Secondary progressive (SP)	46
Fig.(11)	Progressive-relapsing (PR) MS	47
Fig.(12)	Sources and metabolism of vitamin D	58
Fig.(13)	Determinants of low or impaired vitamin D	67
	status and hypothesized intermediary	
	mechanisms underlying increased risk and severity of multiple sclerosis	
Fig.(14)	Effect of vitamin D on immune cells	71
Fig.(15)	Schematic diagram of the relation between UVR	76
	exposure and burden of the disease	70
Fig.(16)	Proposed mechanisms of systemic	82
	immunosuppression following UV irradiation of	
	skin	
Fig.(17)	Light-stimuli-mediated hypothesis	85
Fig.(18)	Mean serum 25-hydroxyvitamin D	89
	concentrations in different populations	

Fig.(19)	Showing anatomical localization of H-reflex	102
Fig.(20)	Sex distribution in study groups	117
Fig.(21)	Percentage of affected cases between pre & post UVR therapy across different clinical data	121
Fig.(22)	Mean value between pre & post UVR therapy patients in different rating scales	122
Fig.(23)	MRI results of pre & post UVR therapy patients in group I	124
Fig.(24)	VEP trace of Rt & Lt eye amplitude & latency.	125
Fig.(25)	H-reflex trace of LL amplitude & latency.	126
Fig.(26)	Mean values of VEP between pre & post UVR therapy patients	128
Fig.(27)	Mean values of H-reflex between pre & post UVR therapy patients	129
Fig.(28)	Mean serum Vit D level in group I pre, post 1m & post 3m UVR therapy patients	.131
Fig.(29)	percentage of clinically +ve cases among group I & II	133
Fig.(30)	Mean value between group II & group I(post) UVR therapy patients in different rating scales	135
Fig.(31)	MRI results among group I (post) & II	136
Fig.(32)	VEP trace of Rt & Lt eye amplitude & latency	137
Fig.(33)	H-reflex trace of UL amplitude & latency.	138
Fig.(34)	Mean values of VEP between group II & group I (post) UVR therapy patients	141

Fig.(35)	Mean value of H-reflex between group II &	142
	group I (post) UVR therapy patients	
Fig.(36)	percentage of patients developed new attacks	144
	among group I & II	
Fig.(37)	Serum Vitamin D level in group I & group	147
	II	
Fig.(38)	Serum Vitamin D level in group I (post 3m) &	148
	group II	
Fig.(39)	Serum Vitamin D level in male & female	150
	patients	

Abstract

Multiple sclerosis (MS) is a devastating neurological disease that attacks young adults and affects all aspects of their lives. vitamin D deficiency is common in MS patient and may play a role in its pathogenesis. Recent studies suggest ultraviolet radiation (UVR)/vitamin D is protective against the development of multiple sclerosis (MS). Ultraviolet radiation (UVR) influences the immune system.

Key Words:

-Multiple sclerosis

- Vitamin D

-Ultraviolet radiation