

Role of Multi-Detector Computed Tomography (MDCT) in the evaluation of postoperative spine with orthopedic hardware

Thesis
Submitted for partial fulfillment of MD degree in
Radiodiagnosis

By

Khaled Abd EL Baky Ahmed EL Hannan

M.B.B.Ch., M.Sc Faculty of Medicine, Mansoura University

Supervised by

Prof. Dr. SALWA MOHAMED FATHY ISMAIL Professor of Radiology Faculty of Medicine Cairo University

Prof. Dr. YOUSRY MOHAMED KAMAL EL HAWARY
Professor of orthopedic surgery

Faculty of Medicine
Cairo University

Dr. MANAR HUSSEIN ABD EL SATTAR

Assist. Professor of Radiology
Faculty of Medicine
Cairo University

Acknowledgement

Thanks for **ALLAH** who gave me the strength and knowledge to complete the present work.

I would like to express my deepest gratitude and appreciation to my **Prof. Dr. Salwa Mohamed Fathy Ismail** Professor of Radio-diagnosis Faculty of Medicine, Cairo University who gave opportunity for this thesis and without her marvelous supports, the accomplishment of this work would have never been possible.

I am so grateful to **Prof. Dr. Yousry Mohamed Kamal EL Hawary** Professor of Orthopedic Surgery Faculty of Medicine, Cairo University for his continuous encouragement appreciable guidance and valuable advice.

I am extremely indebted to **Dr. Manar Hussein Abd El Sattar** Assistant professor of Radio-diagnosis Faculty of Medicine, Cairo University for her valuable advice, continuous guidance, endless encouragement and for meticulous supervision.

I would like to thank all my professors in Radiodiagnosis department Cairo University for their kind help and cooperation all over the work.

Finally I would like to express my profound gratitude to all my colleagues for great facilities they offered me.

Khaled Abd El Baky
2014

List of Abbreviations

AP	Antero-posterior
C.S	Cervical spine
CT	Computed tomography
FOV	Field of view
HU	Hounsfield unit
Kv	Kilovoltage
L.S	Lumbar spine
mAs	Miliamber
MDCT	Multi-detector computed tomography
MIP	Maximum intensity projection
MPRs	Multiplanar reconstructions
MRI	Magnetic resonance imaging
T.S	Thoracic spine
VRT	Volume rendering technique

List of figures

No	Title	Page
1	Anterior, lateral and posterior depictions of the entire spine	4
2	Cervical vertebrae	7
3	Thoracic vertebrae	8
4	Lumbar vertebrae	9
5	T11 transpedicular approach	14
6	Arterial supply of the vertebral body	15
7	Vertebral venous systems	17
8	Anterior cervical discectomy and fusion done by autogenous bone graft and ORION plate	19
9	Posterior cervical spine wiring.	21
10	Odontoid fracture fixation	22
11	Types of cages	25
12	Normal progression of interbody fusion in a 28 year old woman	31
13	Anteroposterior (A) and lateral (B) radiographs show the metallic markers	32
14	Anteroposterior radiograph shows single level instrumentation (L5 through S1	
	vertebrae) with a device made of rods and screws	33
15	Anteroposterior radiograph shows a rod and screw device that spans multiple levels	33
16	Rod and screw device	34
17	Plate and screw device	35
18	Diagram and radiograph show lumbar spinal fusion with a Hartshill rectangle.	36
19	Harrington rods for posterior spinal fixation	39
20	Diagram and radiograph show the Kaneda device	41
21	Diagram and radiograph show a stand alone lumbar interbody fusion cage	42
22	Anteroposterior radiograph shows an expandable metallic cage (Synex).	43
23	Anteroposterior radiograph shows a Moss cage	43
24	Anteroposterior radiograph shows stackable carbon fiber-reinforced cages.	43
25	Total disk replacement with the ProDisc device	44
26	Infection and pseudo-arthrosis following spinal fusion	46
27	Fracture of pedicular screw	49
28	Nonunion of Bagby and Kuslich (BAK) cages	50
29	Collapsed vertebral endplate following spinal fusion	51
30	Poor screw placement in thoracic spinal fusion	52
31	Poor technical fusion and screw insertion of sacroiliac joint	54

No	Title	Page
32	a. 140 kV peak, smooth filter, bone window (see the mobilization). b 120 kV peak,	
	smooth filter, bone window. c 120 kV peak, hard filter, soft tissue window	58
33	VRT reconstructions in grayscale. A: Filter 20; B: filter 40; C: filter 60; D: filter 80	59
34	Subsidence of LT-CAGE devices at L5–S1	65
35	Lucency surrounding pedicle screws	65
36	Cystic changes within the endplates adjacent to the implants.	65
37	Medial orientation of pedicle screw	76
38	Distribution of age and sex of the 50 patients included in the study group	77
39	Distribution of indications of post operative MDCT in all patients included in the	
	study	79
40	Clinical presentation of patients included in the study	81
41	Case (1)	100
42	Case (2)	102
43	Case (3)	104
44	Case (4)	106
45	Case (5)	108
46	Case (6)	110
47	Case (7)	112
48	Case (8)	114
49	Case (9)	116
50	Case (10)	118

List of tables

No	Title	Page
1	16 MDCT Scanning Protocols and Parameters for Spine with Orthopedic	
	Hardware at Different Anatomic Regions	70
2	Age and sex distribution of 50 patients in the study group	76
3	Indications of post operative MDCT in all patients included in the study.	78
4	The clinical presentation of patients included in the study.	80
5	Types of operative spinal fusion included in the study	82
6	Assessment of various types of bony fusion levels by MDCT and	
	radiography in 29 patients included this study	84
7	Comparison between plain radiographic findings and MDCT findings in	
	assessment of number mal-placement of the screws included in this	
	study	85
8	Complication related to the orthopedic hardware fixation included in this	
	study	87
9	Comparison between plain radiographic findings and MDCT findings in	
	vertebral assessment in post operative spine in this study	88
10	Assessment of bony fusion in different MPR and VRT reconstructions of	
	MDCT in this study	90
11	Assessment of the number of the mal-placed screws in different	
	reconstruction planes of MDCT in this study	92
12	Assessment of complications related to the orthopedic hardware in	
	different reconstruction planes of MDCT in this study.	94
13	Vertebral assessment in post operative spine in different reconstruction	
	planes of MDCT in this study	95
14	Artifacts in relation to the types of hardware and different reconstruction	
	planes of MDCT in this study	96
15	MDCT and Plain radiography assessment of mal-placement screws in	
	comparison to surgical findings in re-operated four patients (nine	
	screws) included in this study	97
16	Metal composition of the hardware included in 50 patients in this study.	98

Contents

Subject	Page
Introduction & aim of the work	1
Review of the literature	
Anatomy	4
Spine instrumentation	18
• Imaging of postoperative spine fusion	45
• Imaging of complications	49
• Techniques for reducing metal-related artifact	56
• CT interpretation	63
Patients and methods	68
Results & Case presentation	76
Discussion	119
Summary and Conclusion	140
References	142
Arabic Summary	
	Í

Keyword

MDCT- orthopedic- Kv- T.S

Abstract

Objective: To assess the role of multi- detector computed tomography (MDCT) in the evaluation of postoperative spine with orthopedic hardware in comparison to the routine conventional plain radiography.

Material and Methods: This prospective study included 50 patients with postoperative spine. All subjects were evaluated by conventional radiography and MDCT. Volumetric raw data were acquired in the helical mode (16 slices per tube rotation) with thin collimation and were transferred from the PACS to a separate dedicated post-processing workstation. All patients were evaluated for spine bony fusion, malplacement of pedicular screws and other complications.

Results: A statistically significant difference was found between MDCT and conventional radiography in the evaluation of bone fusion and malplacement screws. Compared to re operating surgical findings, MDCT identified eight malplaced screws while radiography detects five screws.

Conclusion: Multi- detector computed tomography (MDCT) was valuable in the evaluation of postoperative spine with orthopedic hardware in comparison to the routine conventional plain radiography.

INTRODUCTION AND AIM OF THE WORK

Introduction

Computed tomography (CT) historically has held a central role in musculoskeletal (MSK) imaging as a result of its ability to evaluate a large number of bony lesions accurately. In more recent years, magnetic resonance imaging (MRI), with its ability to produce multi-planar imaging and its improved characterization of the soft tissue, has played an increasing central role. However, CT retains an important place in MSK imaging, which has increasing further with the advent of multi - detector computed tomography (MDCT) and its ability to produce near isotropic voxels allowing for multiplanar reformats(MPRs) and faster data acquisition. CT has obvious advantages over MRI in the imaging of acute trauma, but also may have other advantages, such as in the imaging of post operative patient. Unlike MRI, there is few, if any, absolute contra indication to CT (West et al, 2009).

Evaluating the spine in patients with metal orthopedic hardware is challenging. Although the effectiveness of conventional computed tomography (CT) can be limited by severe beam-hardening artifacts, the evolution of multichannel CT in recent years has made available new techniques that can help minimize these artifacts. Multichannel CT allows faster scanning times, resulting in reduced motion artifacts; thinner sections, with which it is possible to create a scanned volume of isotropic voxels with equivalent image resolution in all planes; and the generation of a higher x-ray tube current, which may result in better penetration of metal hardware and reduction of artifacts. Although 140 kVp and high mill amperage-second exposure are recommended for imaging patients with hardware, caution should always be exercised, particularly in

children, young adults, and patients undergoing multiple examinations. The acquisition of multiplanar reformatted images in the axial, sagittal, coronal, and oblique planes and of three-dimensional volume-rendered images optimizes image interpretation. Wide window settings are best for reviewing images when hardware is present. The integrity of hardware is best assessed with multiplanar average intensity projection (**Douglas-Akinwande et al, 2006**).

Postoperative imaging of the spine is performed for (a) routine assessment of patients with a good clinical outcome or (b) assessment of recurrent or intractable pain (Sanders and Truumees, 2004).

After spinal fusion surgery, imaging is routinely performed to evaluate for the development of pseudoarthrosis or to determine the degree of spinal fusion. This information is used as a guide for the initiation of physical therapy and the elimination of restrictive bracing (Sanders and Truumees, 2004).

The use of CT for monitoring the progression of inter body fusion is now common at many centers. Thin-section reconstructed CT scans, especially the reformatted coronal and sagittal images, have been demonstrated to show fusion maturation and bone growth and have been effective in fusion evaluation. The scatter effect from second-generation metal devices has not been found to be a significant obstacle when using thin-section CT (Cook et al, 2004).

Potential post surgical complications such as nonunion, osteolysis, infection, and heterotopic ossification are all well assessed by 3D CT (Fayad et al, 2009).

The aim of the work

The aim of this work is to assess the role of multi- detector computed tomography (MDCT) in the evaluation of postoperative spine with orthopedic hardware in comparison to the routine conventional plain radiography, clinical and surgical outcome.

ANATOMY

The structural unit of the spine is the vertebra. There are 33 vertebrae in the human spine: 7 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 4 coccygeal (fig 1). The 5 sacral vertebrae are fused and form a composite bone, the sacrum, and the 4 coccygeal vertebrae are usually fused to form the coccyx (Mathis, 2006).

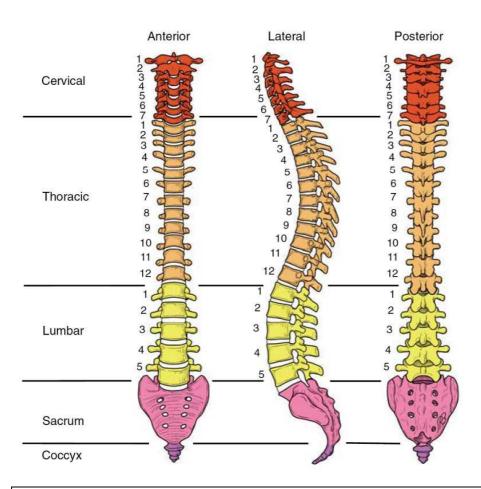


Fig. (1) Anterior, lateral and posterior depictions of the entire spine. The lateral view shows the normal lordotic curve found in the cervical and lumbar regions. A kyphotic curve is normal in thoracic and sacral regions. These curves can be modified or accentuated in disease (Mathis, 2006).

TYPICAL VERTEBRAE

A typical vertebra consists of a body and an arch. The body is classified as a long bone with a waist like diaphysis, or shaft, situated between two endplates, or epiphyses. The heights of the vertebral bodies increase from the cervical to the lumbar regions, reflecting the fact that the bodies carry the weight of the trunk, upper limbs, and head (**Dephilip** and McGraw, 2004).

The vertebral arch consists of two pedicles, two laminae, and seven processes. The pedicles project posteriorly from the vertebral body and reach the laminae. There are three processes at the junction of the pedicle and its corresponding lamina. A transverse process projects laterally and acts as a lever and attachment point for intrinsic muscles of the back. A superior articular process projects superiorly and articulates with the inferior articular process of the vertebra above. Similarly, an inferior articular process projects inferiorly and articulates with the superior process of the vertebra below. The pars interarticularis is the isthmus of bone between the superior and the inferior articular processes. The laminae meet posteriorly in the midline at the spinous process. The continuous ring of bone formed by the posterior aspect of the vertebral body, the two pedicles, and the two laminae create the vertebral foramen. When the 33 vertebrae are in articulation, the superimposed vertebral foramina form the vertebral canal (**Dephilip and McGraw, 2004**).

1- Cervical Vertebrae

Cervical vertebrae are distinguished by foramina in their transverse processes that transmit the vertebral artery and associated sympathetic nerve plexus, and the vertebral vein (Fig 2). The spinous processes of C2–C7 are bifid and the transverse processes have anterior and posterior tubercles. The vertebral foramina are large to accommodate the large diameter of the cervical spinal cord and to permit extensive movement (Dephilip and McGraw, 2004).

The first cervical vertebra is a ring of bone containing two lateral masses connected by anterior and posterior arches. The anterior arch displays a tubercle on its anterior aspect for attachment of the anterior longitudinal ligament and the longus capitis muscle. A facet on its posterior aspect articulates with the odontoid process of the axis. The posterior arch displays a posterior tubercle for muscle attachment and grooves on either side for the horizontal portion of the vertebral artery (**Dephilip and McGraw, 2004**).

The distinguishing feature of the C2 vertebra is its odontoid process or dens. Each lateral mass of the axis has a superior articulating surface to receive the inferior articulating surface of the atlas and an inferior articulating surface to meet the superior articulating process of C3. Its spinous process is large and bifid, being the attachment point for intrinsic muscles of the back, namely the semispinalis cervicis and the inferior oblique muscle of the suboccipital triangle (**Dephilip and McGraw**, **2004**).

The spinous process of C7 is the first that can be palpated in the midline of the neck, earning the C7 vertebra the name vertebra prominens (**Dephilip and McGraw 2004**).

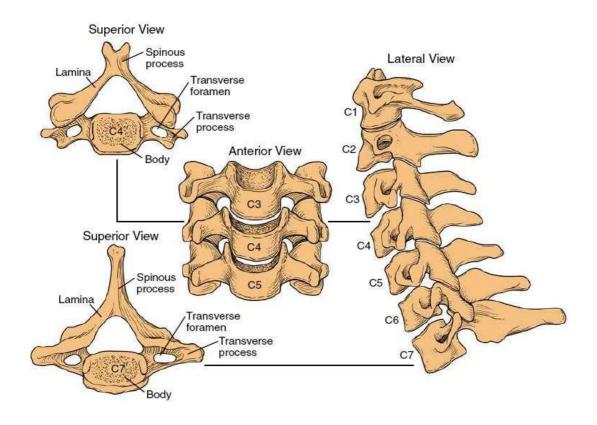


Fig 2. Cervical vertebrae (Mathis, 2006).