Interleukin-28B Gene polymorphism in Egyptian patients with chronic hepatitis C infection related liver diseases

Thesis submitted in Partial fulfillment of the M.D Degree in infectious diseases and endemic hepatogastroenterology

BY

Mohamad Saeed Marie

Master degree in Endemic medicine

Supervisors

Prof. Dr. Hosny Mohamad Salama

Professor of Endemic Medicine Faculty of Medicine Cairo University

Prof. Dr. Eman Medhat Hassan

Professor of Endemic Medicine Faculty of Medicine Cairo University

Prof. Abdel-Rahman Zekri

Professor of Molecular Virology and Immunology National Cancer Institute Cairo University

Ass. Prof. Dr. Rasha Ahmad Abd Elaziz

Assistant Professor of Endemic Medicine Faculty of Medicine Cairo University

Cairo University 2012

Acknowledgement

First of all, Thanks to **GOD**, without his will, nothing could have been achieved.

My gratitude to **Prof. Dr.Hosny Salama** Professor of Tropical Medicine, Cairo University, for his support and endless advices and help. He gave me much of his time, experience and support, his valuable comments and collaboration were the causes to complete this work properly.

I would like to thank **Prof. Dr. Eman Medhat** Professor of Tropical Medicine, Cairo University, for her effort, kindness, and generous help, without her help this work could not be done.

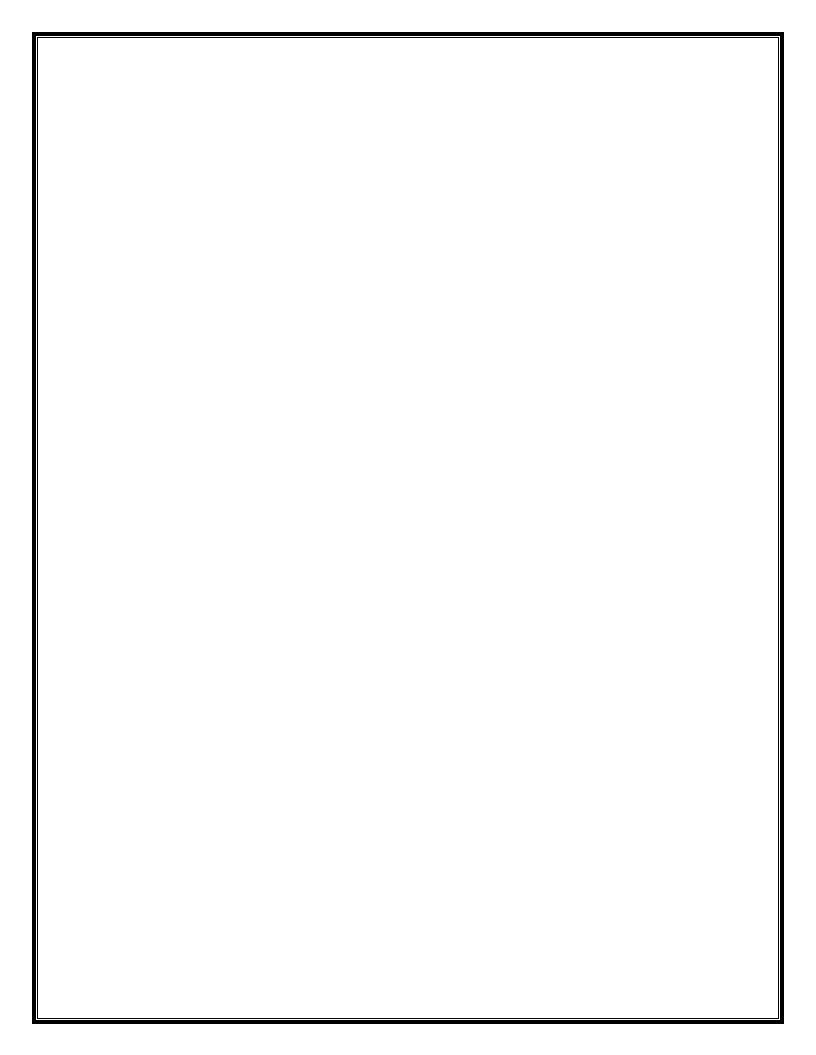
I would like to thank **Prof. Dr. Abdel Rahman Zekri** Professor of immunology and virology, national cancer institute for his effort, time, and insight advices.

I would like to appreciate the great effort of **Dr Rasha Ahmad**, assistant professor of tropical medicine, to finish this work.

To all my professors, and colleagues to whom I have the honor to belong, to who taught and advised me, who gave me their confidence, who trained me and pushed me forwards.

Abstract

Background/Aims: Polymorphism at the IL28B gene may modify the course of hepatitis C virus (HCV) chronic infection. Our aim was to study the influence of IL28B rs12979860 gene polymorphism on the biochemistry and pathology of HCV-induced disease in the clinical course from mild chronic hepatitis C to hepatocellular carcinoma.


Methods: We have determined the rs12979860 single nucleotide polymorphism (SNP) upstream IL28B gene in three groups of Egyptian patients with HCV-induced chronic liver disease: 1) 119 patients with biopsy-proven chronic hepatitis C, to analyze its relation with biochemical and histological features; 2) 66 patients with HCV-related liver cirrhosis and 3)71 patients with hepatocellular carcinoma. Their results were compared to the results of 48 normal persons.

Results: No relation was found between the analyzed SNP and METAVIR scores for necroinflammation and fibrosis, and there were no differences in the distribution of the analyzed SNP between hepatocellular carcinoma and untreated chronic hepatitis C patients.

Conclusion: The IL28B rs12979860 polymorphism doesn't correlate with the histological staging or severity of liver fibrosis in chronic hepatitis C and doesn't correlate with the incidence of hepatocellular c Interleukin 28B - HCV - Liver cirrhosis - Hepatocellular carcinoma

Key Words:

arcinoma in the Egyptian patients.

Table of contents

Introduction	1
Aim of the work	3
Review of literature	
Chapter 1 Natural history of HCV infection	4
Chapter 2 Factors affecting chronic HCV progression	22
Chapter 3 Interleukin 28B and HCV control	45
Materials and methods	70
Results	78
Discussion	95
Summary and conclusion	104
Recommendations	106
References	108
الملخص العربي	

List of Figures

Figure I	Natural history of HCV infection	4
Figure II	Barcelona clinic liver cancer staging and	19
	treatment schedule	
Figure III	Location of most relevant interleukin (IL) 28B	49
	polymorphisms on chromosome 19 relative to	
	the interferon (IFN)-λ genes:	
Figure IV	IFN-λ signaling pathways	53
Figure V	Allele frequencies of the SNP rs12979860	57
	among different ethnic populations	
F: \/I	Possible treatment algorithms for chronic HCV	
Figure VI	genotype 1 infected patients according to	67
	IL28B alleles	
F' \ //!	 	
Figure VII	Modified Child-pugh score	72
Figure VIII	Diagnosis of HCC according to AASLD	74
	guidelines	
Figure 1	Graph demonstrating IL28B genotypes	84
	distribution in HCV patients and normal	
	subjects	
Figure 2	Graph demonstrating IL28B genotypes	85
	distribution in normal and group (1)	
Figure 3	Graph showing IL28B genotypes distribution	86
J	among group (1) and (2)	
Figure 4	Graph showing relation between fibrosis	88
J	stage and IL28B genotypes in group (1)	
Figure 5	Graph of relation between ALT level and	88
J	IL28B genotype in group (1)	
Figure 6	Graph showing IL28B genotype distribution in	89
0 - 2-	normal subjects and group (2)	- -
Figure 7	Graph showing relation between Child score	91
	and IL28B genotypes in group (2)	

Figure 8	graph showing IL28B genotype distribution in normal and group (3)	92
į 0 -	graph showing IL28B genotype distribution in HCV patients with HCC and those without HCC	93

List of abbreviations

ALT	Alanine aminotransferase	
APOE	Apolipoprotein E	
AST	Aspartate aminotransferase	
BCLC	Barcelona-Clinic Liver Cancer	
BMI	Body mass index	
CCR		
CXCR	Chemokine receptor	
CXCL	Chemokine receptor	
CCL		
CD	Cluster of differentiation	
CHB	Chronic hepatitis B	
CHC	Chronic hepatitis C	
CPTA1	Carnitine palmitoyltransferase 1A	
CTL	Cytotoxic T lymphocytes	
DAAT	Directly acting antiviral treatment	
DNA	Deoxyribonucleic acid	
EVR	Early virologic response rates	
FasL	Fas ligand	
GWAS	Genome wide association study	
HAART	Highly active antiretroviral therapy	
HALT-C	Hepatitis C antiviral long term treatment against cirrhosis	
HBV	Hepatitis B virus	
HCC	Hepatocellular carcinoma	
HCV	Hepatitis C virus	
HE	Hepatic encephalopathy	
HIV	Human immunodeficiency virus	
HLA	Human leukocyte antigen	
НарМар	Haplotype map	
HRS	Hepatorenal syndrome	
IDUs	Injecting drug users	
IFN	Interferon	
IL	Interleukin	

IL28B	Interleukin 28B
IL- 10Rβ	interleukin-10 receptor β chain
IL-28Rα	interleukin-28 receptor α chain
ISG	IFN-stimulated gene
Jak	Janus kinase
KIR2DL3	Killer cell immunoglobulin-like receptor 2DL3
LDLR	Low-Density Lipoprotein Receptor
MIP	Macrophage inflammatory protein
MMPs	Matrix metalloproteinases
NHANES	National Health and Nutrition Examination
INHANES	survey
NK	Natural killer
PEG-IFN	Pegylated interferon
PMN	polymorphonuclear leucocytes
RBV	Ribavirin
RNA	Ribonucleic acid
RVR	Rapid virological response
SBP	Spontaneous Bacterial Peritonitis
SNP	single nucleotide polymorphism
SOCS-3	Suppressor of cytokine signaling 3
STAT	Signal Transducers and Activators of Transcription
SVR	Sustained virological response
TGFβ1	Transforming growth factor beta 1
Th1	T helper 1
TNF	Tumor necrosis factor
Tyk	Tyrosine kinase
VDR	Vitamin D receptor

<u>List of Tables</u>

Table i	Factors affecting progression of chronic HCV infection	22
Table 1	Demographic features of patients in the studied groups	79
Table 2	Laboratory findings in the studied groups	79
Table 3	Results of the IL polymorphism in normal subjects	80
Table 4	Results of the liver biopsy in group 1 according to the METAVIR SCORE	80
Table 5	Results of ALT level in group 1	81
Table 6	Results of the IL polymorphism in group (1)	81
Table 7	Results of modified Child-pugh score in group (2)	81
Table 8	Results of the IL28B gene polymorphism in group (2)	82
Table 9	Results of AFP in group (3)	82
Table 10	Results of the IL28B gene polymorphism in group (3)	83
Table 11	Comparison between all HCV infected patients and normal subjects as regards IL-28B C/T genotype	83
Table 12	IL28B allele frequency among all HCV infected patients and normal subjects	83
Table 13	Comparing group (1) and normal subjects as regards IL-28B C/T geneotype	84
Table 14	IL-28B C/T allele frequency in group (1) and normal subjects	85
Table 15	Comparison between group (1) and group (2) as regards IL-28B C/T genotype	85
Table 16	IL-28B C/T allele frequency among patients in group (1) and group (2)	86
Table 17	Comparison between group (1) and group (3) as regards IL-28B genotype	86

,		
Table 18	IL-28B allele frequency between group (1) and group (3)	87
Table 19	Relation between fibrosis stage and IL-28B C/T genotype in group (1)	87
Table 20	Relation between ALT level and IL-28B genotype in group (1)	88
Table 21	comparison between patients in group (2) and control subjects as regards the IL-28B rs12979860 C/T genotype	89
Table 22	IL-28B allele frequency in patients in group (2) and control subjects	89
Table 23	comparison between patients in group (2) and group (3) as regards the IL-28B C/T genotype	90
Table 24	IL-28B allele frequency in patients in group (2) and (3)	90
Table 25	Relation between degree of hepatic compensation and IL28B gene polymorphism in group (2)	91
Table 26	Comparison between patients in group (3) and control subjects as regards the IL-28B rs12979860 C/T genotype	92
Table 27	Allele frequency in patients in group (3) and control subjects	92
Table 28	Comparison between HCV patients with HCC and without HCC as regards the IL28B genotype and allele frequency	93
Table 29	Relation between AFP level and IL28B genotype in group (3)	94

Introduction

Several immunological factors have been implicated in determining disease outcomes in hepatitis C virus (HCV) infections (*Rehermann*, 2009). Approximately 30% of individuals clear the infection naturally, whereas the remaining 70% develop chronic disease that may result in liver cirrhosis (LC) and/or hepatocellular carcinoma (*Morgan*, 2011). Therefore, identification of the factors involved in persistent HCV infections may lead to the development of effective prognostic tests and hence improved treatment management or to the development of novel antiviral agents. Although the role of the adaptive immune response has been well documented, other evidence supports a role for the innate immune system in regulating disease progression in HCV infection (zekri et al., 2010). More recent evidence to support a role for the innate immune system in HCV outcomes, has come from a series of studies on SNPs in the IL28B gene region which predicts spontaneous and type 1 IFN induced clearance of HCV infections. Multiple genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) near the IL28B gene (encoding IFN-λ3) to be strongly associated with spontaneous and treatment-induced clearance of HCV infections (Rauch et al., 2010). One of these SNPs, rs12979860 was pivotal in predicting the resolution of HCV infections (Thomas et al., 2009). The SNP rs12979860 is found ~ 3 kb upstream from the IL28B gene. Little is known about the IFN λ family, but evidence is mounting to support a role for them in the immune response to viral infections (Chevaliez and Hezode, 2010). Therefore, associations made between IL28B variants and HCV clearance in large-scale genetic studies provides an exciting mechanistic link between innate immunity and viral clearance. Chronic HCV patients (CHC) can be roughly categorized into

patients with a very slow disease progression and patients with rapid progression into LC and HCC. The factors controlling the pathobiology of HCV disease are either viral or host related. No apparent differences between the pathobiology of HCV genotypes was reported until Mihm et al. identified a relationship between hepatic steatosis and HCV genotype 3 infections *(mihm, 2010)*.

This relationship was subsequently confirmed by comparing patients infected with genotype 3 and those infected with other genotypes. However, Genotype 4a represents more than 93 % of chronic HCV patients in Egypt (Elkady et al., 2009)

AIM OF THE WORK

The aim of this trial is to:

- To assess the allelic and genotypic frequencies of the IL-28B rs12979860 C/T polymorphism in patients with chronic HCV infection at various stages of the disease in comparison to healthy control subjects
- To verify whether this polymorphism is an independent predictor of the degree and progression of fibrosis in chronic hepatitis C
- To verify whether this polymorphism is an independent predictor of incidence of HCC
- To investigate the interaction between the IL-28B rs12979860 C/T polymorphism and other factors known to influence the evolution of chronic hepatitis C

Chapter One

Natural history of HCV infection

The natural history of hepatitis C is quite varied. There are some inherent drawbacks in studying natural history. First, it is difficult to ascertain the exact time of acquirement of infection; second, primary infection is commonly asymptomatic and last, disease progression is slow.

Natural history data reported in the literature vary according to the type of study (retrospective vs. prospective). Different study populations also result in different predictions about natural history (*Hourigan et al.*, 1999) (patients attending liver clinic vs. blood donors vs. community-based studies vs. post-transfusion cohorts).

Natural History of HCV Infection

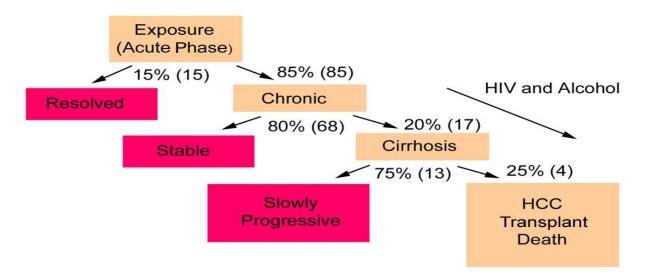


Fig (I): Natural history of HCV infection (Hourigan et al., 1999)

A- Acute hepatitis C virus infection:

Acute hepatitis C virus (HCV) infection is infrequently diagnosed, because the majority of acutely infected individuals are asymptomatic. In the transfusion setting, where acute onset of HCV infection has been best documented, 70–80%