The Role of MR Defecography in assessment of Anal incontinence, Obstructed Defecation and Simple Anal Diseases (Anal fissure, Hemorrhoids and Perianal Fistula) **Thesis Submitted for Fulfillment of Master Degree in Radiodiagnosis** Tagwa Ahmed Adam Idris (MBBCH) **Faculty of Medicine University of Khartoum - Sudan Supervisors** Professor. Mamdouh Mahfouz Ali **Professor of Radiodiagnosis Faculty of Medicine Cairo University** Professor. Ahmed Farag Ahmed Farag **Professor of General Surgery Faculty of Medicine Cairo University** Dr. Rania Farouk Elsayed **Lecturer of Radiodiagnosis Faculty of Medicine Cairo University Cairo University** 2014

Acknowledgments

No such work can be produced without cooperation and help of dedicated persons, my sincere and deep gratitude to:

- ◆ Professor. Mamdouh Mahfouz Ali, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University.
- ◆ Professor. Ahmed Farag Ahmed Farag ,Professor of General Surgery ,Faculty
 of Medicine ,Cairo University
- ◆ *Dr. Rania Farouk Elsayed*, Lecturer of Radiodiagnosis, Faculty of Medicine, Cairo University. For their non-limited support, guidance & advice.

My warm thanks to:

- MRI unit's high nurses, technicians, and workers.
- ♦ My lovely family "mother, sister and brothers".
- ◆ My magnificent husband and kid.
- ♦ My friends and colleagues.
- ♦ The patients.

Also especial thank to **Egypt** which gave me such opportunity.

Here and after, thanks to almighty Allah, asking him the straight path "amen".

Abstract

The new information obtained with such modality most likely to be higher than conventional defecography especially in patients with AI. We believe that MRI with its lack of ionization, capability of multi planar acquisitions and the presence of different imaging types with the newly established normal parameters of the evacuation phase in male and female are capable to allocate the MR imagining in a corner stone position when it comes to the assessment of patients with PFD.

Keyword

ARA, HAPCs, STP. MRI, Hemorrhoids, Anal fissure

Index

- 1. List of figures 1
- 2. List of tables 1
- 3. List of abbreviations1
- 4. Introduction&Aim of the work1
- 5. Embryology5
- 6. Anatomy9
- 7. Physiology of defecation & anal continence 52
- 8. Anorectal dysfunctions65
- 9. Clinical evaluation82
- 10.Investigations: physiological tests89
- 11. Investigations: imaging of anorectal dysfunctions 95
- 12. Methods 134
- 13.**Results**146
- 14. Case presentation 164
- 15.Discussion188
- 16. Summary 204
- 17.conclusion 208
- 18. References 210
- 19. Arabic Summary

Num ber	Contents	Page number
1	The tail end of a human embryo, about 4 weeks old.	5
2	Embryologic development of the rectum and anal canal.	7
3	Embryology of anal canal	8
4	Passive and active structures of the pelvic floor	10
5	Three-dimensional schematic of the components of the pelvic floor	11
6	Bony pelvis AP & Lateral Views	11
7	Diagram of the levator ani	13
8	Cranial view of the female pelvic floor	15
9	Schematic representation of the pelvic floor (coronal plane)	16
10	Perineal muscles.	16
11	MRI axial anatomy of levator ani muscles.	22
12	MRI coronal anatomy of levator ani muscles.	23
13	MRI sagittal anatomy of levator ani muscles.	24
14	MRI Coronal section through midpelvis.	25
15	MRI coronal BFFE shows iliococcygeus angle.	25
16	3D structural orientation of levator ani muscles.	28
17	MRI axial T2-weighted image shows intact puborectalis	29
18	MRI Sagittal sections at rest& straining, showing the changes in the	29
	levator ani muscles	
19	MRI axial section shows width of levator hiatus.	29
20	schematic diagram of (RVF) rectovaginal fascia	31
21	Drawing of anal canal.	33
22	Schematic diagram shows Blood supply of rectum & anal canal.	38
23	Schematic drawing of the nerves of the female pelvic region.	38
24	Schematic drawing of external anal sphincter and puborectalis.	39
25	MRI sagittal images show Perineal body.	42
26	MRI Axial T2WI image of anal sphincter at the mid anal level.	45
27	MRI axial & coronal contrast-enhanced TIWI of the anal canal.	45
28	Endo anal MRI axial images show external anal sphincter.	46
29	Endo anal MRI axial images show external anal sphincter and	47
20	Internal anal sphincter.	10
30	MRI axial T2WI of anal canal in male and female.	48
31	MRI Coronal T2WIs show anal canal in male and female.	50
32	MRI coronal T2WI shows levator ani inserts onto the internal obturator muscle.	50

ii

57	Normal endoanal ultrasound appearance in an adult female (mid anal canal).	109
58	Endoanal ultrasound shows internal anal sphincter defect.	110
59	Endoanal ultrasound shows external anal sphincter defect.	111
60	Three-dimensional endoanal sonogram at midanal canal shows large obstetric tear involving both internal and external anal sphincters.	112
61	Drawing of the sagittal midline view of the female pelvis shows PCL, H &M lines.	114
62	Normal static and dynamic MR imaging findings in female.	115
63	shows anatomic landmarks used in the HMO classification system.(MRI and diagrams of normal and diseased)	119
64	MRI static, dynamic & defecography in female with fecal incontinence.	123
65	Upright MRI defecography in a female with obstructed defecation.	124
66	Photomicrograph of biopsy specimen of normal external anal sphincter.	126
67	Photomicrograph of biopsy specimen of external & internal anal sphincter, and axial endoanal MRI in a case of fecal incontinence.	126
68	Axial T2WI of lower part of the anal sphincter reveals scar tissue.	127
69	Static MR images in two patients, both with anal incontinence and POP.	127
70	Static and dynamic MR images in-patient with anal incontinence and POP.	129
71	MRI Sagittal FIESTA image obtained during defecation shows rectocele.	130
72	MR defecogram obtained during defecation shows intussusception	131
73	MRI Sagittal FIESTA images of severe three-compartment descent	132
74	Straining midsagittal MR image shows moderate hiatal enlargement with mild pelvic floor descent accompanied by pan compartment failure	134
75	Coronal& Sagittal T2WIs show important anatomic landmarks to conduct MRI examination.	139
76	Sagittal T2 for obtaining static axial images of anal sphincter.	139
77	Static MRI anal sphincter complex (axial, coronal, sagittal)	140
78	MRI sagittal (static & evacuation) shows how to measure anal sphincter diameter during rest & evacuation.	141

79	Comparison between mean values of H line diameter in maximum straining and evacuation phases within each studied groups (control, AI &OD).	146
80	Comparison between mean values of M line diameter in maximum straining and evacuation phases within each studied groups (control, AI &OD).	148
81	Comparison between mean values of LPA in maximum straining and evacuation phases within each studied groups (control, AI &OD).	150
82	Comparison between mean values of WLH in maximum straining phase for (control, AI &OD) groups.	151
83	Comparison between mean values of ILca in maximum straining phase for (control, AI &OD) groups.	152
84	Comparison between mean values of anorectal junction descent in maximum straining and evacuation phases for (control, AI &OD).	154
85	Comparison between the presence of rectocele in maximum straining phase for (control, AI &OD) groups.	155
86	Comparison between the presence of rectocele in evacuation phase for (control, AI &OD) groups.	156
87	percentage of reduction in anal sphincter diameter in control and simple anal disease.	162
88	MRI static images of pelvic floor & anal Sphincter complex	163
89	MRI BFFE axial oblique of anal sphincter complex in normal	164
90	MRI BFFE sagittal dynamic images straining & evacuation in normal	153
91	MRI BFFE dynamic coronal oblique & axial	166
92	MRI BFFE dynamic coronal oblique evacuation images	166
93	endoanal ultrasound at the level of midanal canal in case2	167
94	MRI static BFFE axial oblique plane of anal sphincter complex in case 2	168
95	MRI dynamic pelvic floor sagittal plane in case 2	169
96	MRI dynamic pelvic floor axial plane in case 2	170
97	MRI dynamic pelvic floor coronal plane in case 2	170
98	MRI static BFFE axial oblique plane of anal sphincter complex in case 3	172
99	MRI dynamic pelvic floor sagittal plane(Rest ,maximum straining & evacuation)in case 3.	172
100	MRI dynamic pelvic floor axial & coronal in case 3	173

Figures

101	conventional defecography case 4	174
102	MRI T2 midsagittal plane of case 4	175
103	T2 axial oblique of anal sphincter in case 4	175
104	T2 axial oblique of anal sphincter in case 4	176
105	T2 coronal of anal sphincter in case 4	176
106	MRI dynamic sagittal, axial & coronal in case 4	177
107	Sagittal evacuation in case 4	178
108	MRI T2 midsagittal plane during (rest, maximum straining &evacuation phases) in Case 5	179
109	MRI dynamic pelvic floor axial & coronal planes during maximum straining.	179
110	Conventional defecography case6	180
111	MRI T2 midsagittal of anal sphincter case 6	181
112	MRI axial oblique of anal sphincter complex case 6	181
113	MRI coronalT2 of anal sphincter complex in case6	182
114	MRI dynamic pelvic floor sagittal plane during (rest & maximum straining) in case 6	182
115	MRI dynamic pelvic floor axial during maximum straining in case 6.	183
116	MRI dynamic pelvic floor coronal plane during maximum straining in case 6.	183
117	MRI dynamic pelvic floor evacuation phase in case 6.	184
118	Anal sphincter diameter during rest &evacuation phases in case7 with simple anal disease.	185
119	MRI dynamic pelvic floor, rest &evacuation phases in case 8 with simple anal disease.	186

Table number	Content	Page number
Table 1	Dimensions of the anal sphincter complex & perianal structures	43
Table 2	Factors related to anal continence	55
Table 3	Drugs that can exacerbate fecal incontinence	68
Table 4	Pathophysiology of chronic constipation	74
Table 5	Initial clinical assessment of patient with anal incontinence	83
Table 6	Food and drink that may exacerbate fecal incontinence in patients with loose stools	84
Table 7	Wexner fecal incontinence scoring system.	84
Table 8	Rome III criteria in 2006 for constipation.	85
Table 9	Rome III Diagnostic Criteria for Irritable Bowel Syndrome.	86
Table10	Diagnostic Criteria for Functional Fecal Incontinence.	88
Table11	Diagnostic Criteria for Functional Defecation Disorders	88
Table12	MRI reporting system	117
Table13	Grading of Pelvic Floor Relaxation	120
Table14	Change of Surgical Therapy in Specific Patients	128
Table15	Demographic features of the studied groups.	145
Table16	Comparison between mean values of H-line in maximum straining phase for (control, AI &OD) groups	145
Table17	Comparison between mean values of H-line in evacuation phase for (control, AI &OD) groups	146
Table18	Comparison between mean values of H-line in maximum straining and evacuation phases within each studied	146

	groups (control, AI &OD)	
Table19	Comparison between mean values of M line diameter in maximum straining phase for (control, AI &OD) groups.	147
Table20	Comparison between mean values of M line diameter in evacuation phase for (control, AI &OD) groups	147
Table21	Comparison between mean values of M line diameter in maximum straining and evacuation phases within each studied groups (control, AI &OD).	148
Table22	Comparison between mean values of LPA in maximum straining phase for (control, AI &OD) groups.	149
Table23	Comparison between mean values of LPA in evacuation phase for (control, AI &OD) groups.	152
Table24	Comparison between mean values of LPA in maximum straining and evacuation phases within each studied groups (control, AI &OD).	150
Table25	Comparison between mean values of WLH in maximum straining phase for (control, AI &OD) groups.	151
Table26	Comparison between mean values of ILca in maximum straining phase for (control, AI &OD) groups.	152
Table27	Comparison between mean values of ARJ descent in maximum straining phase for (control, AI &OD) groups.	153
Table28	Comparison between mean values of ARJ descent in evacuation phase for (control, AI &OD) groups.	153
Table29	Comparison between mean values of ARJ descent in maximum straining and evacuation phases within each studied group.	154
Table30	Comparison between the presence and diameter of rectocele in maximum straining phase for (control, AI &OD) groups.	155

Table31	Comparison between the presence and dimension of rectocele in evacuation phase for (control, AI &OD) groups	156
Table32	Comparison between the presence and diameter of rectocele in maximum straining phase for females of	157
Table33	between the presence and diameter of rectocele in evacuation phase for females of (control, AI &OD) groups.	157
Table34	Structural abnormalities in maximum straining.	158
Table35	Structural abnormalities in evacuation.	158
Table36	Anal sphincter diameter in control group.	159
Table37	EAS injury in (control, AI &OD) groups.	159
Table38	IAS injury in (control, AI &OD) groups.	160
Table39	Puborectalis injury in (control, AI &OD) groups	160
Table40	Iliococcygeus injury in (control, AI &OD) groups	161
Table41	Comparison between mean values of anal sphincter diameter in (control & simple anal disease) in straining & evacuation phases and percentage of reduction.	162

List of Abbreviations

- **ACL**: Anal Canal Length.
- **AF**: anal fissure.
- **AI**: Anal Incontinence.
- ARA: Anorectal Angle
- **ARJ**: Ano Rectal Junction.
- **AS**: Anal Sphincter.
- **ATFP**: Arcus Tendineus Fascia Pelvis.
- **ATLA**: Arcus Tendineus Levator Ani.
- **BFFE**: Balanced Fast –Field Echo.
- **DTPM**: Deep Transverse Perineal Muscle.
- EAS: External Anal Sphincter.
- **EMG**: Electromyography.
- **FI**: Fecal Incontinence.
- **HAPCs**: high amplitude propagated contractions.
- IAS: Internal Anal Sphincter.
- ILCM: Ilio-Coccygeus Muscle.
- ILCMA: Ilio-Coccygeus Muscle Angle.
- LAM: Levator Ani Muscle.
- **LP**: Levator Plate.
- **LPA**: Levator Plate Angle.
- MRD: Magnetic Resonance Defecography.
- **ODS**: Obstructed Defecation Syndrome.
- **OIM**: Obturator Internus Muscle.
- **PAF**: Perianal fistula.
- **PCL**: Pubo coccygeal Line.
- **PFD**: Pelvic Floor Dysfunction.
- **POP**: Pelvic Organ Prolapse.
- **PRM**: Pubo Rectalis Muscle.
- STP: Superficial Transverse Perinii Muscle.
- **T1WI**: T1 weighted image.

- **T2WI**: T2 weighted image.
- **THK**: Thickness.
- WLH: Width of Levator Hiatus.

Introduction & Aim of the work

Pelvic floor dysfunction (**PFD**) has a significant impaction socially, psychologically and economically. *Elsayed R (2013)*, mentioned that each year PFD affects 300,000 to 400,000 of American women so severely that they require surgery and approximate $\sim 30\%$ of the procedures are reoperations. Pelvic floor dysfunction (PFD) is a term applied to a wide variety of clinical conditions, including urinary incontinence (UI), pelvic organ prolapse (POP), defecatory dysfunction, sensory and emptying abnormalities of the lower urinary tract, sexual dysfunction, and several chronic pain syndromes *(Elsayed R ,2013)*.

Disorders of the anorectum and pelvic floor affect approximately 25% of the population (*Rao*, 2010); and bout 10% to 20% of patients seeking medical care in gastrointestinal clinics have anorectal dysfunction (*Roost et al*, 2002).

The evaluation and treatment have been hindered by a lack of understanding of underlying mechanism (s) and a working knowledge of the diagnostic advances in this field. A meticulous evaluation of anorectal structure and its function can provide invaluable insights regarding the pathogenic mechanism(s) of these disorders. Also, significant new knowledge has emerged over the past decade that include the development of newer diagnostic tools such as high resolution manometry and MR defecography as well as a better delineation of the clinical and pathophysiological subtypes of constipation and incontinence (*Rao*, 2010). Generally, anorectal dysfunctions divided into two main categories: 1) *Anal incontinence* & 2) *Constipation*