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Abstract

Abstract

In autosomal recessive distal renal tubular acidosis (dRTA),
progressive bilateral sensorineural hearing loss is common association.
This coexistence is due to the mutations of a gene expressed both in the
kidney and in the cochlea. The aim of this study was to assess the
correlation between hearing loss and dRTA.

In this study, 26 patients diagnosed with renal tubular acidosis
were evaluated. Diagnosis of dRTA was based on clinical manifestations
and detection of normal anion gap metabolic acidosis, urine pH higher
than 5.5. Tympanometry was performed to all subjects but audiometry or
ABR was performed in patients with DRTA according to patient age and
cooperation.

The median age of the studied patients was 4.7 years, 57.7% were
males, and 42.3% were females. Twelve patients (46.2%) had bilateral
sensorineural hearing loss, consisting of 6 of 15 boys (40%) and 6 of 11
girls (54.5%). There is no statistically significant difference between
patients of dRTA with SNHL and others with CHL or normal hearing in
serum pH, Ca and urinary pH.

This study indicated that a significant percentage of the children
with dRTA had sensorineural hearing loss. It is recommended to
investigate hearing impairment in all children with dRTA and to study the
genotype phenotype relation in our population.

Keywords:

Distal renal tubular acidosis, sensorineural hearing loss.
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I ntroduction & Aim of work

Introduction

Distal renal tubular acidosis (dRTA) results from impaired renal
acid excretion characterized by normal anion gap hyperchloremic
acidosis with a normal (or near normal) glomerular filtration rate (GFR)
(Karet, 2002).

Clinical and functional studies allow classification of RTA into
four types: proximal (Type 2), classic distal (Type 1), and Hyperkalemic
distal (Type 4) and combined proximal and distal (Type 3) (McSherry et
al., 1972).

The primary or hereditary forms of dRTA can be transmitted in an
autosomal dominant or autosomal recessive form (Karet, 2002).

Dysfunction of intercalated cells in the collecting tubules accounts
for all the known genetic causes of dRTA (Batlle et al., 2012).

DRTA can be associated with growth retardation, hearing loss,
failure to thrive (FTT) and severe untreated RTA is usually accompanied
by bone disease, such as rickets or osteomalacia and nephrocalcinosis
and/or nephrolithiasis are often present (Unwin et al., 2003).

Two types of autosomal recessive dRTA have been differentiated
by the presence or absence of sensorineural hearing loss, but appear
otherwise clinically similar. Defects in the B1 subunit gene ATP6V1B1
and the A4 subunit gene ATP6VOA4 cause dRTA with deafness and with

preserved hearing, respectively (Stover et al., 2002).

Aim of Work

The aim of this study was to assess the correlation between hearing
loss and dRTA.
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Anatomical background of kidneys:
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Figure (1): Gross anatomy of the kidney.

The kidneys are paired retroperitoneal structures that are normally
located between the transverse processes of T12-L3 vertebrae, with the
left kidney more superior in position than the right. The upper poles are
normally oriented more medially and posteriorly than the lower poles.
The kidneys serve important functions, including filtration and excretion
of metabolic waste products (urea and ammonium); regulation of
necessary electrolytes, fluid, and acid-base balance; and stimulation of
redblood cell production. They also serve to regulate blood pressure via
the renin-angiotensin-aldosterone system, controlling reabsorption of
water and maintaining intravascular volume. The kidneys also reabsorb
glucose andamino acids and have hormonal functions via erythropoietin,

calcitriol, and vitamin D activation (Cheuk et al., 2013).
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Microscopic Anatomy:

The kidney is divided into the cortex and medulla. Renal pyramids
in the medullary areas are separated by the cortical tissue called renal
columns (of Bertin).

The functional renal unit is the nephron, which is composed of the
following:

- The renal corpuscle: glomerulus and Bowman capsule

- Proximal convoluted tubules (PCT, located in the renal cortex)

- Descending loop of Henle (LOH), ascending limb (which resides in the
renal medulla, leading to the thick ascending limb), thick ascending limb
- Distal convoluted tubule-Collecting duct (which opens into the renal
papilla)

Blood from the afferent glomerular arteriole passes through the
juxtamedullary apparatus to the glomerulus. The glomerulus is a network
of capillaries that filters blood across Bowman capsule into the proximal
convoluted tubule.

The glomerulus contains podocytes and a basement membrane
allowing water and certain solutes to be filtered across. This filtrate then
reaches the PCT, which reabsorbs glucose and various electrolytes along
with water as the filtrate passes through. Meanwhile, after being filtered
at the glomerulus, the blood passes into the efferent glomerular arteriole

and then descends into the renal pyramid (Cheuk et al., 2013).
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Figure (2): Microscopic anatomy of the kidney.

Physiology of renal tubules:

The kidney plays two major roles in acid-base homeostasis. First,
the filtered bicarbonate load (approximately 4000 mmol/day) must be
reabsorbed, mainly in the proximal tubule and beyond in the loop of
Henle and distal nephron (Rodriguez-Soriano, 2000).

Second, the Kkidney must regenerate new bicarbonate
(approximately 50 £ 100 mmol/ day) in the process of acid-secretion,
mainly in the collecting ducts, to match the amount of newly produced
acid load by systemic metabolism (Wagner et al.,2004).

Proximal Tubular Bicarbonate Reabsorption

HCOj is freely filtered at the glomerulus and approximately 80 to
90% of this is reabsorbed in the proximal tubule. In the tubular lumen,
HCO; combines with H” in a reaction catalyzed by CA 1V, which is
bound to the luminal membrane of proximal tubular cells (Rodriguez-
Soriano, 2000).
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This reaction produces carbonic acid, which is promptly converted
to CO, and H,0. The resulting CO, rapidly diffuses into the tubular cells
and is combined with water to produce intracellular H" and HCOs". This
intracellular reaction is catalyzed by CA Il. HCOj3 is then cotransported
with Na’ into blood (with a probable stoichiometry of 3 HCO; to 1 Na®)
viathe NBC-1, located on the basolateral cell membrane. The
intracellular H* produced by CA 1l is secreted into the tubular lumen
predominantly via the NHE-3, situated on the luminal membrane (Fry
and Karet, 2007).

This transport process is called facilitated diffusion and depends on
the sodium concentration gradient generated by the action of a basolateral
membrane Na™-K* ATPase. It should be mentioned that there is minimal
net acid excretion in the proximal tubule, since most of the H* secretion is
coupled with HCO; reabsorption. The small amount of remaining H* will
be buffered by phosphate as titratable acid (Soleimani and Burnham,
2000).

HCOj3 reabsorption is influenced by luminal HCO3™ concentration
and pH, luminal flow rate, peritubular pCO,, and angiotensin Il (Fry and
Karet, 2007).

Proximal tubular cells are capable of generating “extra”
bicarbonate through the deamination of glutamine to glutamate, then
forming o-ketoglutarate and eventually glucose. This metabolic process
produces HCO; and NH,": the former reclaimed viathe basolateral
membrane and the latter secreted into the tubular lumen. This pathway

can be up regulated in states of chronic acidosis (Smulders et al., 1996).
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Figure (3): The main mechanisms of proximal tubular bicarbonate
reabsorption.
e Cytoplasmic carbonic anhydrase (CAII)
e Na" — H" exchanger (NHE3)
e Na" - HCO3 cotransporter (NBC-1)
e Carbonic anhydrase (CAIV)

Distal Tubular Hydrogen Secretion

One of the important roles of the collecting duct segment of the
nephron is acid secretion, combined with reclamation of the
approximately 10% of filtered HCOj that is not reabsorbed by more
proximal nephron segments (Biner et al., 2002).

Urinary acid excretion is therefore essential, and urine pH can drop
as low as 4.5. The a-intercalated cell is the main responsible for hydrogen
secretion into the urine. Hydrogen pumps called H'-ATPases mainly
carry out hydrogen secretion (Wagner et al., 2004).

H*-ATPases are present at high density on the luminal membrane

of a-intercalated cells.



