

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communication Engineering Department

Time Domain & Frequency Domain Equalizers for Digital Lines

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering
Submitted by:

Eng. Hatem Yousry El Sayed Mohamed

B.Sc. of Electrical Engineering (Electronics and Communications Engineering) Ain Shams University, 2000

Supervised by:

Prof. Dr. Salwa Hussein El Ramly

Department of Electronics and Communications. Faculty of Engineering, Ain Shams University

Cairo, 2006

شَهِدَ اللّهُ أَنَّهُ لَآ إِلَهَ إِلَّاهُوَ وَالْمَلَتَهِكَةُ وَأُوْلُواْ الْعِلْمِ قَآبِمَا بِٱلْقِسْطِ اللّهَ لَآ إِلَهَ إِلَّاهُوَ ٱلْعَهِيزُ ٱلْحَكِيمُ

حدق الله العظيم

ACKNOWLEDGEMENTS

الحمد لله رب العالمين

I would like to thank my supervisors *Prof. Dr. Salwa El Ramly* and *Dr. Sami Mostafa* for their great guidance and help.

Prof. Dr. Salwa El Ramly sets an example that we all aspire to. Her keenness and her willingness to advance her students to higher levels of knowledge and thinking methodology are much appreciated.

I would also like to thank *Dr. Sami Mostafa* for his encouragement and his support.

My warmest gratitude goes to *Eng. Meriam K. Ragheb*. Discussions, which were very fruitful and crucial to the completion of this work.

Thanks to my *parents*. Their patience, care, and love are what made me. I pray to God that I will always be a good faithful son to them.

I would like to thank my *wife* for her love, support, and understanding. She took care after me during Master although I was spending most of my time with my computer and references books instead of her.

Many Thanks are due to my colleagues and friends: *Eng. Mohamed El Dakrory* and *Eng. Hossam Yehia* are the definition of true friends. *Eng. Mohamed Abd El Hameed* gave me a brother's support in different situations.

I am grateful for the inspiration and wisdom of many thinkers and for the trans-generational sources and root of this wisdom.

Thanks to all my friends.

STATEMENT

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Electrical Engineering

(Electronics and Communication Engineering).

The work included in this thesis was carried out by the

author at the Electronics and Communications Engineering

Department, Faculty of Engineering, Ain Shams

University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Date: 24th June, 2006.

Name: Hatem Yousry El Sayed Mohamed.

- 5 -

Contents

1 C	NAPTER 1	21
INTROD	UCTION & THESIS ORGANIZATION	21
1.1	Introduction:	21
1.2	THESIS ORGANIZATION:	
2 G	NAPTER 2	28
HIGH SP	EED DATA COMMUNICATION SOLUTIONS	28
2.1	Introduction:	28
2.2	HIGH-SPEED WIRE-LINE TRANSCEIVERS:	30
2.3	VOICE-BAND TRANSCEIVERS:	
2.4	INTEGRATED SERVICES DIGITAL NETWORK (ISDN) TRANSCEIVERS	
2.5	CABLE TRANSCEIVERS:	
2.6	DIGITAL SUBSCRIBER LINE TRANSCEIVERS:	
2.7	Conclusion	
	NAPTER 3	
DIGITAL	CHANNEL CHARACTRISTICS	
3.1	Introduction:	
3.2	CARRIER SERVING AREA (CSA):	
3.3	THE CHANNEL MODEL:	
3.4	Conclusion	
	MAPTER 4.	
CHANNE	ESTIMATION ALGORITHMS	60
4.1	Introduction:	60
4.2	MATHEMATICAL FRAMEWORK:	65
4.3	ADAPTIVE FILTER STRUCTURES:	
4.4	ADAPTIVE FILTERING ALGORITHMS:	
4.5	CONCLUSION:	
	NAPTER 5	
CHANNE	I SHORTENING ALGORITHMS	109
5.1	Introduction:	109
5.2	CHANNEL SHORTENING ALGORITHMS:	
5.3	THE SHORTENING EQUALIZER:	
5.4	Conclusion	142
6 C	NAPTER 6	144
CONCLU	ISIONS	144
6.1	Conclusion:	144
6.2	FITTIPE WORK	

APPENDIX (A)	150
REFERENCES	15

List of Figures

Figure 2. 1 Typical dial-up connection via a voice band modem	33
Figure 2. 2 Typical ISDN connection	. 36
Figure 2. 3 ADSL connection with G.DMT and G.lite	. 40
Figure 3. 2 A general two-port linear circuit	. 51
Figure 3. 3 Transmission line	. 52
Figure 3. 4 Simulated echo traces representing the shape of the	
echoes generated by four different discontinuities located at a	
distance of 9Kft from the CO probing signal: 5-V and 5-µs square	
pulse	. 54
Figure 3. 5 FDM ADSL	. 55
Figure 3. 6 The Characteristics of CSA1	
Figure 4. 1The simulation system	
Figure 4. 2 The equalization process	. 64
Figure 4. 3 Adaptive system identification using a transversal filter	:.65
Figure 4. 4 Transversal filter	
Figure 4. 5 The two modes of operation of an adaptive equalizer	. 72
Figure 4. 6 Equalization using the non-blind adaptive algorithm	. 74
Figure 4. 7 Impulse response of a discrete channel	. 76
Figure 4. 8 Decision-feedback equalizer	. 78
Figure 4. 9 The estimated channel using ARMA	. 81
Figure 4. 10 Elements of Adaptive Filter	. 82
Figure 4. 11 Signal-flow graph representation of the LMS Algorith	ım
	. 88
Figure 4. 12 The estimated channel using LMS	. 90
Figure 4. 13 The estimated channel using RLS	. 95
Figure 4. 14 The constant modulus algorithm (CMA)	. 98
Figure 4. 15 The Equalization using Blind adaptive algorithm	100
Figure 4. 16 The estimated CSA1 channel using CMA/LMS	101
Figure 4. 17 The estimated CSA1 channel using CMA/RLS	101
Figure 4. 18 BER calculation	
Figure 4. 19 BER of LMS algorithm as an example	
Figure 4. 20 The CSA channel with the estimated CSA by ARMA	105
Figure 4. 21 The CSA channel with the estimated CSA by LMS &	
CMA/LMS	105
Figure 4. 22 The CSA channel with the estimated CSA by RLS &	
CMA/RLS	106
Figure 5. 1 Channel shortening	114
Figure 5. 2 LS approach to impulse shortening	
	0

21
5
24
25
28
29
32
33
36
37
10
11
3 2 3 3 4

List of Tables

Table 1. 1 ADSL performance
Table 2. 1 Some residential consumer applications and their upstream
and downstream data rate requirements 29
Table 2. 2 Some business consumer applications and their upstream
and downstream data rate requirements
Table 4. 1 The BER values using different algorithms for channel
estimation. 106
Table 4. 2 The MSE according to each algorithm 108
Table 5. 1 The BER values at different values of N_b and N_f for LMS
channel estimator . 123
Table 5. 2 The BER values at different values of N_b with N_f for RLS
channel estimator
Table 5. 3 The BER values at different values of N_b with N_f for
ARMA channel estimator
Table 5. 4 The BER values at different values of N_b with N_f for
CMA/LMS channel estimator
Table 5. 5 The BER values at different values of N_b with N_f for
CMA/RLS
Table 5. 6 Implementation and computational cost of the maximum
SSNR method to find f_{opt}
Table 6. 1 A comparison among the LMS, RLS & ARMA 145

List of Symbols and abbreviations:

δ	A small positive constant.
$\partial \xi / \partial w_k$	The vector of gradient of the mean-square
	error.
a(i)	The desired response.
a_n	The vector of tap-inputs in the feedback
	section.
a _k [n]	Real-valued data sequences operating at a
	sampling rate of F _T .
a_n	System output, training sequence.
b _k [n]	Real-valued data sequences operating at a
	sampling rate of F _T .
c_k	The combination of the feed-forward and
	feed-back tap-weights.
E[.]	The statistical expectation operator.
e_n	The prediction error.
f	SFIR filter.
F _c	Cutoff frequency.
f_{opt}	The optimum shortened filter.
F _T	Transmission frequency.
h_0	The channel impulse response that occur after
	the main sample.
$H_{ch}(f)$	Bandpass frequency response.
$H_{sh}(f)$	The shortened frequency response.
$H_{eq}(f)$	The FEQ equalizer transfer function.
h_e	The estimated channel impulse response.
h_{eq}	The time domain response of equalizer.
$h_{\it eff}$	Effective channel impulse response.
h_{sh}	The shortening impulse response.
h_k	System impulse response.
h_{wall}	Samples outside the window of size N_b from
	the effective channel impulse response.

h_{win}	Samples inside the window of size N_b from
	the effective channel impulse response.
I	The identity matrix.
j_n	The combination of input samples for both
	sections.
L_h	The length of carrier serving area impulse
	response.
N	up-sampled factor
N_b	the desired length of shortened impulse
	response
N_f	Number of taps of SIRF filter.
q_{opt}	The optimum eigenvector corresponding to
	the maximum eigenvalue.
q_{min}	the smallest eigenvector associated with the
	smallest eigenvalue of the matrix C.
$R_{ex}(k)$	The cross-correlation function.
R_{XX}	The correlation matrix.
$\mathbf{u}_{\mathbf{k}}[\mathbf{n}]$	Real sequence.
11	Cyclic prefix.
ν	Cyclic pichix.
$w_k^{(1)}$	The tap-weights of the feed-forward section.
$w_k^{(1)}$ $w_k^{(2)}$	
$w_k^{(1)}$	The tap-weights of the feed-forward section.
$w_k^{(1)}$ $w_k^{(2)}$	The tap-weights of the feed-forward section. The tap-weights of the feed-back section.
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(n)}$	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector.
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(n)}$	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(n)}$ w_k	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector.
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(n)}$ w_k	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(n)}$ w_k W_k	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response samples of the transversal filter.
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(n)}$ w_k W_k W_k	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response samples of the transversal filter. The transpose of <i>W_k</i> .
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(2)}$ $w_k^{(n)}$ w_k W_k W_k	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response samples of the transversal filter. The transpose of W _k . The optimal weight vector.
$w_{k}^{(1)}$ $w_{k}^{(2)}$ $w_{k}^{(2)}$ $w_{k}(n)$ W_{k} W_{k} W_{k}^{T} W_{opt} $x[n]$	 The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response samples of the transversal filter. The transpose of W_k. The optimal weight vector. Composite signal.
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(2)}$ $w_k^{(n)}$ w_k W_k W_k W_k^T W_{opt} $x[n]$ $x_a(t)$	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response samples of the transversal filter. The transpose of W _k . The optimal weight vector. Composite signal. Transmitted analog signal.
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(2)}$ $w_k^{(n)}$ w_k W_k W_k W_k^T W_{opt} $x[n]$ $x_a(t)$	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response samples of the transversal filter. The transpose of W _k . The optimal weight vector. Composite signal. Transmitted analog signal. System input, the vector of tap-inputs in the
$w_k^{(1)}$ $w_k^{(2)}$ $w_k^{(2)}$ $w_k(n)$ W_k W_k W_k^T W_{opt} $x[n]$ $x_a(t)$ x_n	The tap-weights of the feed-forward section. The tap-weights of the feed-back section. The estimate taps weight vector. The set of adaptive filter coefficients, taps weight vector. The vector composed of the impulse response samples of the transversal filter. The transpose of W _k . The optimal weight vector. Composite signal. Transmitted analog signal. System input, the vector of tap-inputs in the feed-forward section.

y(i)	The output produced by N taps transversal filter whose tap inputs (at time i).
y[n]	Received digital signal.
y _a (t)	Received analog signal.
$\alpha_{\mathbf{k}}$	Set of complex sequences.
λ^{n-i}	The forgetting factor.
μ	A small positive constant called the step-size parameter.
ξ	The mean-square error.
Φ [n]	The correlation matrix.

2B1Q	2 binary, 1 quaternary.
4B3T	4 binary, 3 ternary.
ADSL	Asymmetric DSL.
AMI	Alternate mark inversion.
ANSI	American National Standards Institute.
ARMA	Auto-Regressive Moving-Average.
ATM	Asynchronous Transfer Mode.
ATU-C	ADSL Transmission Unit at the Central office.
ATU-R	ADSL Transmission Unit at the Remote.
AWG	American Wire Gauge.
BER	Bit Error Rate.
BRITE	Basic Rate ISDN Transmission Extension.
CAP	Carrier-less Amplitude/Phase modulation.
CDSL	Consumer DSL.
CMA	Constant Modulus Algorithm.
CO	Central Office.
CRC	Cyclic Redundancy Codes.
CSA	Carrier Serving Area.
DFT	Discrete Fourier Transform.
DLC	Digital Loop Carrier.
DMT	Discrete Multi-Tone.
DOCSIS	Data Over Cable System Interface
DOCSIS	Specification.
	- 14 -

DSL	Digital Subscriber Line.
ECH	Echo Cancellation.
FDM	Frequency Division Multiplexing.
FEC	Forward Error Control.
FEQ	Frequency Domain Equalizer.
FFT	Fast Fourier Transform.
FIR	Finite Impulse Response.
FSK	Frequency Shift Keying.
HDSL	High bit rate DSL.
IDSL	ISDN DSL.
IP	Internet Protocol.
ISDN	Integrated Service Digital Network.
ISI	Inter-symbol interference.
LMS	Least-Mean-Square.
LPF	Low-pass filter.
MCM	Multi-Carrier Modulation.
MDF	Main Distributing Frame.
MPEG-1	Moving Pictures Expert Group
MSSNR	The Maximum Shortening SNR.
MSE	Mean Square Error.
MVL	Multiple Virtual Line.
OFDM	Orthogonal Frequency Division Multiplexing.
O. S	Optimal Shortening.