The significance of circulating levels of both cardiac Troponin I and high sensitive C Reactive protein for the prediction of Intravenous thrombolytic outcome in Patient with Anterior STEMI

Thesis
Submitted for partial fulfillment of
Master Degree in Cardiology

By Samer Rubil Yani M.B.B.CH

Under the supervision of

Prof. Tarek Monir Zaki

Professor of Cardiology
Faculty of Medicine
Ain Shams University

Dr. Hany Ibrahim Ragy

Consultant of Cardiology National Heart Institute

Dr. Ahmed Mohamed Elmahmoudy

Lecturer of Cardiology Faculty of Medicine Ain Shams University

2013

Faculty of Medicine
Ain Shams University

دور التروبونين (اي) وبروتين (س) التفاعلي عالي الحساسيه في التنبؤ بمدي إنقاذ عضلة القلب الجدار الامامي المصحوب بارتفاع في قطعة س- ت في رسم القلب الكهربي والذين تمت المصحوب باعادة التروية لهم عن طريق مذيب الجلطات

رسالة

مقدمة توطئة للحصول على درجة الماجستير فى أمراض القلب و الأوعية الدموية مقدمة من طبي / سامر روبيل يني اسكندر بكالوريوس الطب و الجراحة تحت إشراف

الأستاذ الدكتور/ طارق منير ذكي أستاذ أمراض القلب و الأوعية الدموية كلية الطب جامعة عين شمس

الدكتور/ هاني ابراهيم راجي استشاري أمراض القلب و الأوعية الدموية معهد القلب القومي

الدكتور/ أحمد محمد المحمودي مدرس أمراض القلب و الأوعية الدموية كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس 2013

List of Contents

	page No
List of abbreviations	I
List of figures	V
List of table	VI
Introduction	1
Aim of the work	3
Review of Literature	4
- Acute myocardial infarction	10
- Myocardial reperfusion	10
- Cardiac	
Biomarkers	30
Patients and Method	61
Results	61
Discussion	100
Conclusion	113
Limitation of study	114
Recommendations	115
Summary	116
References	119
Master table	143
Arabic summary	1

List of Abbreviations

ACC : American college of cardiology

AHA : American Heart Association

AMI : Acute myocardial infarction

APO E : Apo lipoprotein E

AT1R : Angiotensin receptor

AUC : area under the curve

CABG : Coronary arteries bypass grafting

CAD : Coronary artery disease

CCU : Coronary care unit

CDC : the US Centres for Disease Control and Prevention

CK : Creatine kinase

CK-MB : Creatine kinase myocardial band

CRP : C -reactive protein.

CTnl : Cardiac troponin I

CTnT : Cardiac troponin T

cv : cardiovascular

E NOS :e-Nitric oxide syntheses

ECG: Electrocardiogram

ESC : European Society of Cardiology

FMC: First medical contact

GP: Glycoprotein

HAEC: human aortic endothelial cells

HDL: High density lipoprotein

HsCRP: high sensitive c-reactive protein.

I NOS : i-Nitric oxide syntheses

: intercellular adhesion molecule

IL : interleukin

IRA : Infarction related artery

IU: International unit

LAD : Left anterior descending artery

LBBB : Left bundle branch block

LCX : Left circumflex artery

LDH : Lipo dehydrogenize

LDL : Low density lipoprotein

LV : Left ventricle

MBG: Myocardial blush grade

mg : Milligram

mm : Millimeter

MMP :matrix metalloproteinase

MPI : Myocardial perfusion imaging

MPO :myeloperoxidase

mv : Millivolt

NACB : National Academy of Clinical Biochemistry

PCI: Percutaneous coronary intervention

PTCA: Percutaneous transluminal coronary angioplasty

RCA : Right coronary artery

RISK : Reperfusion injury salvage kinase

r-PA :Reteplase

SD: Standard deviation

SK : Streptokinase

SPECT: Single photon emission computed tomography

STEMI : ST segment elevation myocardial infarction

Tc : Technetium

TIMI: Thrombolysis in myocardial infarction

TNK-tPA: Tenecteplase

tPA: Tissue plasminogen activator

URL :upper reference limit

VCAM :vascular cell adhesion molecule

Vs. : Versus

List of Figures

		page No
Figure (1)	Reperfusion strategies	11
Figure (2)	Thrombus aspirated from an occluded	23
	coronary artery during primary PCI	
Figure (3)	Cardiac biomarkers in St-elevation	32
	myocardial infarction (STEMI)	
Figure (4)	Time to initiation of thrombolysis by	75
	outcome	
Figure (5)	Troponin I level by outcome	76
Figure (6)	hsCRP level by outcome	76
Figure (7)	ROC curve for prediction of failed	80
	Thrombolysis using the time to initiation of	
	Thrombolysis	
Figure (8)	Outcome of Thrombolysis by troponin I	83
	tertile	
Figure (9)	ROC curve for prediction of failed	83
	Thrombolysis using troponin I level before	
	initiation of Thrombolysis	
Figure(10)	outcome of Thrombolysis by hs CRPtertiles	88
Figure(11)	ROC curve for prediction of failed	88
	Thrombolysis using hs-CRP level before	
	initiation of Thrombolysis	
Figure(12)	ROC curve derived from multiple logistic	96
	regression model for prediction of failed	
	Thrombolysis	

List of Tables

Title		page No
Table (1)	Distribution of ECG changes in STEMI	7
Table (2)	Doses of fibrinolytics	13
Table (3)	Fibrinolytics commonly used in STEMI	14
Table (4)	Contraindications of fibrinolytics	15
Table (5)	Elevations of troponin in the absence of overt	31
	ischemic heart disease	
Table (6)	Basic characteristics of the whole study	69
	population	
Table (7)	Descriptive statistics of the whole study	71
	population regarding max ST elevation	
	,troponin I and hs CRP	
Table (8)	outcome of thrombolytic therapy of the whole	72
	study population	
Table (9)	Comparison between the two groups as regards	74
	age, sex, risk factor for CAD	
Table (10)	Comparison between two group as regard time	77
	of initiation of Thrombolysis, maximum	
	elevation of ST segment, Circulating level of	
	troponin I& hsCRP and ejection fraction	
Table (11)	Comparison between two group as regard post	78
, ,	Thrombolytic therapy TIMI flow and MBG	

Table (12)	Agreement between ECG and TIMI for	79
	diagnosis of failed Thrombolysis	
Table (13)	Analysis of the ROC curve for prediction of	81
	failed Thrombolysis using the time to	
	initiation of Thrombolysis	
Table (14)	Incidence of successful and failed	82
	Thrombolysis by troponin I tertiles	
Table (15)	Analysis of the ROC curve for prediction of	84
	failed Thrombolysis using troponin I level	
	before initiation of Thrombolysis	
Table (16)	Cross tabulation of outcome of Thrombolysis	85
	and troponin I level exceeding best cutoff value	
Table (17)	Value of troponin I level exceeding best	86
	cutoff value for prediction of failed	
	Thrombolysis	
Table (18)	Incidence of successful and failed	87
	Thrombolysis by hs CRP tertiles	
Table (19)	Analysis of the ROC curve for prediction of	89
	failed Thrombolysis using hs-CRP level	
	before initiation of Thrombolysis	
Table (20)	Cross tabulation of outcome of Thrombolysis	90
	and hsCRP level exceeding best cutoff value	
Table (21)	Value of hsCRP level exceeding best cutoff	91
	value for prediction of failed Thrombolysis	
	- -	

Table (22)	Cross tabulation of outcome of Thrombolysis	92
	and combined test with either troponin I or	
	hsCRP level exceeding best cutoff value	
Table (23)	Value of a combined test with either troponin	93
	I or hsCRP level exceeding best cutoff value	
	for prediction of failed Thrombolysis	
Table (24)	Multiple logistic regression model for	95
	prediction of failed Thrombolysis	
Table (25)	Analysis of the ROC curve for prediction of	97
	failed Thrombolysis using the multiple	
	logistic regression model	
Table (26)	Overall model fit	98
Table (27)	Hosmer and Lemeshow goodness-of-fit test	98
Table (28)	Classification table for the regression model	99
	at a predicted probability	

المقدمه:

يعتبر احتشاء عضلة القلب المصحوب بارتفاع القطعة (س ت) في رسم القلب الكهربي من أخطر صور قصور الشرايين التاجية ويحدث نتيجة انسداد أحد الشرايين التاجية الرئيسية بصورة تامة والذي يُعد إعادة ترويته الهدف الأول في العلاج.

وتساعد إعادة سريان الدم إلى القلب في إنقاذ خلايا القلب وخفض معدلات الاصابة والوفاة و لكن من الممكن أن يصحب

إعادة التروية إصابة و موت بعض الخلايا القلبية.

<u>: الهدف من الدراسة</u>

تهدف هذه الدراسة الي تقييم دور انزيم التروبونين (اي) وبروتين (سي) التفاعلي عالي الحساسيه على التنبؤ بمدي إنقاذ عضلة القلب في مرضي إحتشاء عضلة القلب المصحوب بارتفاع في قطعة س- ت في رسم القلب الكهربي والذين تمت إعادة التروية لهم عن طريق مذيب الجلطات (عقار استربتوكاينيز).

اختيار المرضى:

يتم اختيار 60 مريضا من المرضى المصابين باحتشاء الجدار الامامي لعضلة القلب المصاحب بارتفاع القطعة (س ت) في رسم القلب الكهربي واعطاء مذيب الجلطات (عقار استربتوكاينيز) خلال ست ساعات من بدايه الشعو بالالم.

وتم استبعاد من لديهم الامراض الاتية:

1-المرضى اصحاب موانع استخدام مذيب الجلطات:

- شرخ في الشريان الاورطي او اي نزيف داخلي .
- جلطه دماغیه حدیثه او اورام او نزیف سابق بالمخ.

2-العوامل الموثره علي قراءه رسم القلب الكهربي مثل:

- انسداد بالضفيرة اليمنى أو اليسري.
- المرضي ذوي اجهزه منظمات ضربات القلب.

3-الهبوط الحاد بالدوره الدمويه

4-العوامل الموثره على قياسات انزيم التوبونين (اي) وبروتين (سي) التفاعلي عالى الحساسيه مثل:

- المرضى المصابين بامراض الفشل الكبدى أو الكلوى أو هشاشة العظام.
- المرضى الذين يعانون من اورام سرطانهه او امراض الالتهاب المزمنه (روماتويد)
 - 5-عدم القدره علي استكمال كامل جرعه مذيب الجلطات نتيجه حدوث مضاعفات.
 - 6-امراض سيوله الدم او النزيف الحاد.
 - 7-الاحتشاء السابق لعضله القلب.

طرق البحث:

يتم فحص المريض فحصا كاملا

- التاريخ المرضى والفحص الاكلينيكي.
- عمل رسم قلب بعد 90 دقيقه من نهايه المذيب ثم بعد 12 ساعه و 24 ساعه ثم يوميا مع تسجيل النشاط الكهربائي للقلب على مدار اليوم عن طريق اجهزة المونيوتور في فترة اقامة المرضى بالعناية المركزة.
 - عمل موجات صوتيه للقلب لتقييم كفأءه عضله القلب.
 - عمل التحاليل الطبية الروتينية.
- قياس نسبه انزيم التروبونين (اي) و بروتين (سي) التفاغلي عالي احساسيه فور دخول المريض للمستشفي.
 - ، عمل قسطره تشخيصيه في اول 48 ساعه من دخول الميض للمستشفى.

Introduction

Acute myocardial infarction remains a leading cause of morbidity and mortality worldwide. Myocardial infarction occurs when irreversible myocardial cell damage or death occur (1)

ST segment elevation myocardial infarction is the most serious presentation of atherosclerotic coronary artery disease carrying the most hazardous consequences (2). It is caused by occlusion of major coronary artery.

Thrombolytic therapy for acute anterior myocardial infarction reduce case fatality and improves clinical outcome (GISSI) (ISSIS-2), (3),(4) however in up to 60% of patients the treatment does not restore perfusion in the myocardium at risk(5) and such failure indicates a worse prognosis (6).

Failed reperfusion after thrombolytic therapy for acute myocardial infarction is common and signifies a poor prognosis. Failed Thrombolysis was defined as <50% ST- segment resolution 90 minutes after the start of the thrombolytic therapy. ST- segment resolution is a useful marker of successful Thrombolysis and relates to clinical outcome (7).

The identification of the predictors of intravenous Thrombolysis failure is essential in everyday clinical practice but remain a challenge. In attempt to identify these predictors ,several clinical and angiographic characteristic, as well as biochemical markers have been suggested(4).in particular ,coronary angiography or ECGs ,elevated circulating levels of either cardiac troponin (ctn) or C reactive protein(CRP)have been related to intravenous thrombolytic failure and prognosis. However, the significant of simultaneous assessed ctn I and CRP has not been evaluated (8).

Aim of the Work

The aim of study is to identify the significance of circulating levels of both cardiac Troponin I and high sensitive C- reactive protein for the prediction of intravenous Thrombolysis outcome in patient with Anterior STEMI.

Patients and Methods

This study willinclude sixty patients admitted to coronary care unit (CCU) with acute anterior STEMI within 6 hours from onset of chest pain who are eligible for reperfusion via intravenous thrombolytic therapy.

A. Patients

Patient will be enrolled according to following inclusion criteria

1. Inclusion criteria:

- I) Patients were presenting with acute anterior STEMI which defined as:
- I) Typical rise and/or fall of cardiac biomarkers of myocardial necrosis with at least one of the following:
- 1) New ST segment elevation at the J point in two contiguous leads with cut off points: 0.2 mV in men and 0.15 mV in women in leads V2 and V3 and/or 0.1 mV in other leads.
- 2) Any ischemic symptoms such as chest pain, palpitation or dyspnea, extra..(9).

2. Exclusion criteria:

Patients who had one or more of the following were excluded from the study:

- 1) Patients with contraindication to thrombolytic therapy such as:
- *Previous hemorrhagic stroke at any time, ischemic stroke within 3 months.
- *Known intracranial neoplasm, structural cerebrovascular lesion, or closed head injury within 3 months.
- * Active bleeding or bleeding diathesis.
- *Suspected aortic dissection.
- 2) Complicating factors on baseline ECG that may significantly over or under estimate the myocardial infarction size such as Left bundle branch block (defined as deep wide QS or occasionally an rS pattern with wide s wave in lead V1, a prominent often notched R wave without a preceding Q wave in lead V6, and a QRS width of 0.12 second or more)
- 3) Paced rhythm.
- 4) Re-infarction during hospital stay.
- 5) Cardiogenic shock.
- 6) Factors may associate with elevated serum troponin as renal impairment.
- 7) Factors may associate with elevated hsCRP as inflammatory diseases.