Flow Cytometry Study of splenic Functions in Children with β Thalassemia and Sickle Cell Anemia

Thesis

Submitted for partial Fulfillment of Master Degree in Pediatrics

By

Ekram Ahmed Abd Elhamid Ahmed

M.B, B.Ch (Faculty of Medecine – Ain Shams university)

Under Supervision Of

Prof. Dr. Azza Abdel Gawad Tantawy

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Dr. Manal A. Shams Eldin Eltelbany

Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Dr. Jonair Hussein Abd Elkafy

Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2013

سورة البقرة الآية: ٣٢

It is a great pleasure to acknowledge the help of many individuals without their help; this work could not have been done.

First, I really find myself lucky to be supervised by **Prof.**Azza Abdel Gawad Tantawy, this work was not merely a project for her, but it was a special aim to which she gave her ultimate effort and attention. There is no aspect of this work she was not involved by her own rule (nothing accepted except excellence). **Prof. Manal A. Shams Eldin Eltelbany** for her great support, for completing the practical part of this work.

For Assistant Prof Dr. Amira Abdel Menam, words are not enough to thank her, I really find myself very lucky to be supervised by her. For Dr Jonair Hussein Abd Elkafy., thanks are not enough to reward her for her great help.

I dedicate my work for my patients and their family hoping happy life for them.

I would be remiss if I failed to acknowledge my family for their tolerance of my absence both physically and emotionally, for their offered encouragement and for their faith in me and my task, many, many thanks.

Ekram Ahmed.

List of Contents

Title	Page	
♦ List of Tables		
♦ List of figures		
♦ List of Abbreviations		
♦ Introduction		
♦ Aim of the Work	3	
• Review of the Literature		
• β-thalassemia	4	
Sickle Cell Disease	18	
■ Immunologic Functions of the Spleen	33	
 Approaches to Measuring Splenic Function 	39	
♦ Patients and Methods	43	
♦ Results		
♦ Discussion		
• Summary		
♦ Conclusion		
♦ Recommendations		
♦ References		
♦ Arabic Summary		

List of Tables

Table	Title	Page
Table-1	Demographic data of the studied patients.	52
Table-2	Clinical data of the studied patients.	
Table-3	Laboratory findings in the studied patients.	
Table-4	The splenic function in sickle cell anemia patients compared to control group.	
Table-5	The splenic function in sickle thalassemia patients compared to control group.	56
Table-6	The splenic function in non-splenectomized β thalassemia major patients compared to control group.	57
Table-7	The splenic function in splenectomized β thalassemia major patients compared to control group.	58
Table-8	The splenic function in thalassemia intermedia patients compared to control group.	59
Table-9	Splenic function in patients with sickle cell anemia compared to non-splenctomized β thalassemia major patients.	63
Table-10	Splenic function in patients with sickle cell anemia compared to splenctomized β thalassemia major patients.	64
Table-11	Splenic function in patients with sickle cell anemia compared to sickle thalassemia patients.	65
Table-12	Splenic function in patients with sickle cell anemia compared to thalassemia intermedia patients.	66
Table-13	Splenic function in patients with sickle thalassemia compared to non-splenctomized β thalassemia major patients.	67
Table-14	splenic function in patients with sickle thalassemia compared to splenectomized β thalassemia major patients.	68

Table-15	Splenic function in patients with sickle thalassemia compared to thalassemia intermedia patients.	69
Table-16	Splenic function in splenctomized patients with β thalassemia major compared to non-splenctomized β thalassemia major patients.	
Table-17	Splenic function in splenctomized β thalassemia	
Table-18	splenic function in non-splenectomized β thalassemia major patients compared to thalassemia intermedia patients.	
Table-19	Correlation between splenic function and hydroxyurea therapy, infection and complications.	73
Table-20	Correlation between splenic function, splenic size and laboratory results.	74

List of Figures

Figure	Title	
Figure-1	Peripheral blood smear of patient with homozygous β-thalassemia.	7
Figure-2	Front view of a desktop flow cytometer.	47
Figure-3	CD71- ve erythrocytes with HJB in cases and control group.	60
Figure-4	CD71+ve reticulocytes with HJB in in cases and control group.	61
Figure-5	CD71 positive reticulocytes in cases and control group.	62
Figure-6	β thalassemia major non splenectomized	
Figure-7	Sickle cell anemia	
Figure-8	Figure-8 Thalassemia intermedia	
Figure-9	Control	78
Figure-10	Figure-10 β thalassemia major splenectomized	
Figure-11	Sickle thalassemia	80

List of Abbreviations

ACS	Acute chest syndrome
ASSCs	Acute splenic sequestration crises
BM	Bone marrow
β-ΤΜ	β thalassemia major
DFO	deferoxamine
DFP	Deferiprone
DFX	Deferasirox
GIT	Gastrointestinal Tract
G6PD	Glucose 6 phosphate dehydrogenase
HJB	Howell Jolly Bodies
Hb	Hemoglobin
Ig	Immunoglobulin
IL	Interleukin
NK	Natural killer
OPSI	Over whelming post splenectomy infection
PSS	Post-splenectomy sepsis
RBC	Red blood cell
ROS	Reactive oxygen species
SCA	Sickle cell anemia
SCCLD	Sickle cell chronic lung disease
Sig	Significant
TM	Thalassemia major
VOCs	Vaso occlusive crises

Introduction and Aim of the Work

Introduction

Sickle cell disease refers to a group of conditions caused by hemoglobin S (HbS) which is formed by a single amino acid substitution, valine for glutamic acid in the sixth position from the N-terminal of the β -chain of the hemoglobin molecule. The heterozygous state (sickle β thalassemia) is a combination of both sickle cell anemia and β thalassemia (**Roy**, **2009**).

Beta-thalassaemias are a group of hereditary human diseases caused by more than 200 mutations of the human β -globin gene, leading to low or absent production of adult β -globin and an excess of α -globin, causing ineffective erythropoiesis and low or absent production of HbA (adult haemoglobin) (**Patrinos et al., 2005**).

The spleen is the largest lymphoid organ in the human body. Its rich and diverse population of immune cells and its ingenious anatomy that enables optimal surveillance and phagocytosis of circulating blood elements play an important role in the defence against pathogens (**Bisharat et al., 2001**).

Many diseases are associated with a dysfunction spleen and the degree of splenic dysfunction varies between patients (Willia and Corazza, 2007). For these patient suspected to have a spleen with diminished function, it is important to quantify their splenic function in order to assess the risk of developing overwhelming infection. Subsequently, preventive measurements can be taken and, in the case of infection, therapy can be started without delay (De porto et al., 2010).

The spleen is one of first organs damaged in sickle cell anemia. Consequences of this damage, increased risk of invasive pneumococcal infection and splenic sequestration, are difficult to predict for a given child (**Thompson et al., 2010**).

Aim of the Work

Aim of the Work

Aim of the work is to quantify Howell-Jolly Bodies by flow cytometry in children and adolescents with sickle cell anemia, sickle β thalassemia and β thalassemia as a measure of splenic function.

Review of Literature

β-thalassemia

Definition:

 β -thalassaemias are a group of hereditary human diseases caused by more than 200 mutations of the human β -globin gene, leading to low or absent production of adult β -globin and an excess of α -globin, causing ineffective erythropoiesis and low or absent production of HbA (adult haemoglobin) (Patrinos et al., 2005).

Pathophysiology:

The excess α -globin chains aggregate in red cell precursors forming inclusion bodies interferes with most stages of normal erythroid maturation, both intramedullary death of red cell precursors through arrest in the G1 phase of the cell cycle and accelerated intramedullary apoptosis of late erythroblasts (**Angelucci et al., 2002**). The red cells that survive to reach the peripheral circulation are prematurely destroyed in the spleen which becomes enlarged, eventually leading to hypersplenism (**Testa, 2004**).