Formatted: Space After: 0 pt

Evaluation of HBsAb titre in adolescents 15-17 years after Hepatitis B vaccine administration

Formatted: Space Before: 0 pt,

After: 0 pt

Formatted: Font: 18 pt

Formatted: Space After: 0 pt

Formatted: Space Before: 0 pt

Formatted: Font: 24 pt

Formatted: Space After: 0 pt, Line spacing: single, Pattern: Clear (White)

Formatted: Space After: 0 pt, Line

spacing: single

Formatted: Space Before: 0 pt

Formatted: Font: 21 pt

Formatted: Font: 21 pt

Formatted: Space After: 0 pt. Line spacing: single

Formatted: Font: 21 pt, (Complex) Arabic (Egypt)

Formatted: Space After: 0 pt, Line spacing: single

Formatted: Font: 21 pt

Formatted: Space After: 0 pt, Line spacing: single

Thesis

Submitted for partial fulfillment of Master Degree in Pediatrics

Ahmed Fouad Mohammed

M.B., B.Ch.

Faculty of Medicine - Ain Shams University

Under Supervision of

Dr. Amel El Faramawy

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Mohammed Eladawy

Lecturer in pediatrics Faculty of Medicine - Ain Shams University

Dr. Amira Hamed

Associate Assistant professor of Clinical Pathology Faculty of Medicine - Ain Shams University

20122014

ACKNOWLEDGMENT

First of all, I wish to express my endless thanks to **ALLAH** for giving me the help to perform this work.

I would like to express my deepest thanks and highest appreciation to *Prof. Dr. Amel Abd Elmagied El Faramawy* Professor of Pediatrics, Faculty of Medicine Ain Shams University, For her valuable help, precious advice, continuous encouragement and constructive guidance that were the most driving forces for the initiation, progress and completion of this work.

I would like to express my deepest thanks and gratitude to *Dr. Mohammed El Adawy* Lecturer in Pediatrics, Faculty of Medicine

Ain Shams University, For his valuable help, precious advice,

continuous encouragement and fruitful guidance.

I owe special thanks and gratitude to *Associate. Prof. Dr. Amira Hamed* Associate Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, For her precious help and fruitful guidance.

I would like to convey my thanks to all the candidates participated in our study for their time and help.

Also, I would like to convey my special thanks to my family for their constant support.

LIST OF CONTENTS

Title	Pag	es
•	List of Content	Ι
•	List of Figures	II
•	List of Tables	IV
•	List of Abbreviations	'II
•	Aim of the work	X
•	Review of Literature	1
	Introduction	1
	Epidemiology	1
	Transmission	3
	Clinical picture and natural history	13
	Diagnosis	25
	Prevention and vaccination	35
	Treatment	58
•	Subjects and Methods	76
•	Results	80
•	Discussion	95
•	Summary	09
•	Conclusion	11
•	Recommendations	12
•	References1	13

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1): Hepatitis B vi	irus Structure	1
Figure (2): Schematic dia	agram of phases of chronic HBV in	nfection 17
Figure (3): Essential mixed	ed cryoglobulinaemia	23
Figure (4): Papular acrod	lermatitis	24
Figure (5): Serological pr	rofile of acute HBV infection	29
Figure (6): Serological pr	rofile of chronic HBV infection	29
Figure (7): Immune respo	onse after primary vaccination and	I memory activation
after booster		48
Figure (8): Who and whe	en to treat: algorithm for treatment	of children and
adolescents with chronic l	hepatitis B	62
Figure (9): Distribution of	of the studied group as regards fam	nily history of chronic
liver diseases		82
Figure (10): Distribution	of the studied group as regards blo	ood serum HBsAbs
before booster dose		84
Figure (11): Distribution	of serum HBsAbs level among the	e studied candidates
before booster dose of HE	3V vaccine	85
Figure (12): Comparison	between negative and positive HE	BsAbs as regards age
and gender		86

Figure (13): Comparison between negative and positive HBsAbs as regards
residency place
Figure (14): Comparison between negative and positive HBsAbs as regards social class
Figure (15): Comparison between negative and positive HBsAbs as regards previous operations
Figure (16): Effect of booster dose of HBV vaccine on antibody titer among the
56 students

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1): Patterns	s of hepatitis B virus infection	2
Table (2): Phases	of HBV infection	17
Table (3): Interpre	etation of Hepatitis B Virus Test Results	28
Table (4): Hepatiti	is B Vaccine Routine Infant Schedule	41
Table (5): Recomm	mended doses of currently licensed formulations of he	patitis B
vaccine, by age gro	oup and vaccine type	42
Table (6): Studies	in different populations in regions with different ende	micity
during the past dec	cade, using anamnestic response to a booster dose	50
Table (7): Data on	studies in different populations in regions with differ	ent
endemicity during	the last decade, using measurement of hepatitis B mar	kers as
markers for breaktl	hrough infection in vaccinated populations	54
Table (8): Major li	iver society guidelines for treatment of chronic hepatit	tis B 61
Table (9): Availab	ole treatments for chronic hepatitis B in children	63
Table (10): Distrib	bution of the studied group as regards general data	80
Table (11): Distrib	bution of the studied group as regards past history of c	hronic
diseases other than	liver diseases	81
Table (12): Distrib	bution of the studied group as family history of chronic	c liver
diseases		82
Table (13): Distrib	bution of the studied group as regards previous operati	ons 83

Table (14): Distribution of the studied group as regards blood transfusion 83
Table (15): Distribution of the studied group as regards blood serum HBsAbs
before booster dose
Table (16): Distribution of serum HBsAbs level among the studied candidates
before booster dose of HBV vaccine
Table (17): Comparison between negative and positive HBsAbs as regards age and gender 86
Table (18): Comparison between negative and positive HBsAbs as regards
residency place
Table (19): Comparison between negative and positive HBsAbs as regards social
class
Table (20): Comparison between negative and positive HBsAbs as regards history of previous operations 89
Table (21): Distribution of the studied group as regards HBV obligatory
vaccination during 1 st year of life and the number of them received a booster dose
as a part of the study
Table (22): Distribution of the studied group who received booster dose of HBV
vaccines as regards general data
Table (23): Effect of booster dose of HBV vaccine on antibody titeramong the 56
candidates
Table (24): Distribution of serum HBsAbs among 56 candidates before and after
booster dose of HBV vaccine as regards Gender

Table (25): Distribution of serum HBsAbs among 56 candidates before and after	r	
booster dose of HBV vaccine as regards Residence) 4	
Table (26): Non Egyptian studies for evaluation of immunogenicity and efficacy		
of HBV vaccination after 1 st obligatory vaccines	98	

LIST OF ABBREVIATIONS

Abbrev.		Meaning
HBV	:	Hepatitis B virus
DNA	:	Deoxynucleic acid
ccc DNA	:	covalently closed circular DNA
RNA	:	Ribonucleic Acid
HBsAg	:	Hepatitis B surface Antigen
qHBsAg	:	quantification of Hepatitis B surface Antigen
HBcAg	:	Hepatitis B core Antigen
HBeAg	:	Hepatitis B e Antigen
HBsAbs	:	Hepatitis B surface Antibodies
HBcAbs (anti-HBc)	:	Hepatitis B core Antibodies
HBeAbs	:	Hepatitis B e Antibodies
HIV	:	Human Immunodeficiency Virus
MTCT	:	Mother to Child Transmission
HBIG	:	Hepatitis B Immunoglobulin
NAT	:	Nucleic Acid Testing
СНВ	:	Chronic Hepatitis B
ALT	:	Alanine Aminotransferase

AST : Aspartate Aminotransferase

GGT : Gamma Glutamyl Transpeptidase

HCC : Hepatocellular Carcinoma

HCV : Hepatitis C Virus

PAN : Polyarteritisnodosa

RIA : Radioimmunoassay

EIA : Enzyme Immunoassay

PCR : Polimerase Chain Reaction

WHO : World Health Organization

CDC : Centers for Disease Control and Prevention

EASL : European Association for the Study of the Liver

AASLD : American Association for the Study of Liver ds

APASL : Asia-Pacific Association for the Study of the Liver

USPSTF : US Preventive Service Task Force

DPT- OPV : Diphtheria, Tetanus, Pertussis and Oral Polio

HLA : Human Leukocyte Antigen

PEP : Post Exposure Prophylaxis

MS : Multiple Sclerosis

ULN : Upper Limit of Normal

FDA : Food and Drug Administration

IFN : Interferon alfa

IFN : Interferon Gamma

VR : Virological Responses

LAM : Lamivudine

LdT : Telbivudine

ETV : Entecavir

NA : Nucleoside/tide Analogue

ELI spot : Enzyme-Linked Immunospot assay

HCWs : Health care workers

SOC : Standard Of Care

Evaluation of HBsAb titre in adolescents 15-17 years after Hepatitis B vaccine administration

Thesis

Submitted for partial fulfillment of Master Degree in Pediatrics

By Ahmed Fouad Mohammed

M.B., B.Ch.

Faculty of Medicine - Ain Shams University

Under Supervision of

Dr. Amel El Faramawy

Assistant professor of Pediatrics

Faculty of Medicine - Ain Shams University

Dr. Mohammed Eladawy

Lecturer in pediatrics

Faculty of Medicine - Ain Shams University

Dr. Amira Hamed

Assistant professor of Clinical Pathology

Faculty of Medicine - Ain Shams University

2012

Formatted: Centered

Introduction

Egypt is considered as a region of intermediate prevalence for HBV infection with reported figure of 4.5%. Infection with HBV in infancy or early childhood may lead to a high rate of persistent infection (25–90%), while the rates are lower if infection occurs during adulthood (5–10%) (WHO, 2007).

In most endemic areas, infection occurs mainly during early childhood and mother-to-infant transmission accounts for approximately 50% of the chronic infection cases (Chang, 2007).

Neonatal HBV vaccination is the most effective measure for prevention of HBV infection in countries with intermediate to high levels of HBV endemicity (Puvacic *et al.* 2004). A compulsory vaccination programme against hepatitis B infection among infants was started in Egypt in 1992 using a yeast recombinant DNA vaccine (10 µg) and with a schedule of 2, 4 and 6 months of age (Mansour *et al.*, 1993).

Seroprotection is assured when hepatitis B surface antibody (anti-HBs) level is > 10 IU/L (Floreani *et al.*,2004). The duration of protection in low risk infants whose mothers are negative for HBsAg and who receive hepatitis B vaccine from birth is unknown. In these populations the risk of HBV infection increases during adolescent and early adulthood (CDC, 2007).

Serologic studies have shown that the titer of antibodies against hepatitis B surface antigen drops within the first few years after vaccination and that one-third to one half of children vaccinated as infants will have titers below 10 IU/L by 10–15 years of age (Dentinger *et al.*, 2005).

Previous studies were done in egypt; In Al - Azhar university the long-term immunity to hepatitis B was assessed among vaccinated (245) children aged 6–11 years, (39.3%) of them had protective level of anti-HBs (>10 IU/L).(*Afifi* et al.,2009). In Menoufyia University, Sero

protection against HBsAg was studied in 200 vaccinated children. Children were divided into two groups. Group A, (100 child around 6 years) of whom 19 (19%) had HBsAb titre < 10 mIU/ mL &81 (81%) had HBsAb titre 10mIU/ mL. While in Group B, (100 child around 11 years), 52 child (52%) had HBsAb titre < 10 mIU/ mL& 48 (48%) had HBsAb titre 10mIU/mL. (*El-Sayed* B, et al.,2009).

Also in Alexandria university, a seroepidemiologic study was conducted to examine the impact of HB vaccination on the carrier state among a vaccinated group of children (1000) compared to a non vaccinated group (500) aged 6ys. The efficacy of HB vaccine in preventing the carriage of HbsAg ,5 ys after full course vaccination was estimated to be around (67%).(Reda A.A et al .,2003)

Aim of the study

The aim of this study is to evaluate the HB surface antibody titer in adolescents aged 15–17 years who had received a full vaccination course during infancy.

Methods & population

Population:

 Hundred and fifty healthy first year students in the Faculty of Medicine Ain-Shams University.

Inclusion criteria:

Healthy adolescent who is 15-17 year old and received full hepatitis
 B virus vaccination course according to Egyptian Expanded
 Immunizing Protocol (EEIP) during infancy.

Exclusion criteria:

- Adolescent who did not receive a full vaccination course during infancy.
- Adolescent that received a full vaccination course after infancy.
- Adolescent_that received a booster dose after the initial vaccination course during infancy.
- Adolescent with hematological, renal or chronic liver disease.