POWER, WEIGHT TRACTOR AND DRAWBAR PULL RELATIONSHIPS DURING FIELD OPERATIONS

By

HUSSEIN ABBAS JEBUR

B.Sc. Agric. Sc. (Agric. Mechanization), Baghdad University, 1997 M.Sc. Agric. Sc. (Agric. Mechanization), Baghdad University, 2001

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Engineering Sciences (Farm Machinery and Power Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

2013

Approval Sheet

POWER, WEIGHT TRACTOR AND DRAWBAR PULL RELATIONSHIPS DURING FIELD OPERATIONS

By

HUSSEIN ABBAS JEBUR

B.Sc. Agric. Sc. (Agric. Mechanization), Baghdad University, 1997M.Sc. Agric. Sc. (Agric. Mechanization), Baghdad University, 2001

This thesis for Ph. D. degree has been approved by:

Dr. Ahmed Taher Imbabi Prof. of Agricultural Engineering, Faculty of Agriculture, Fayoum University Dr. El-Toni Mohamed Ali El-Toni Prof. of Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University

Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams

Dr. Mubarak Mohamed Mostafa

Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture,

Ain Shams University

Dr. Mahmoud Ahmed Elnono

University

Date of Examination: 18 / 7 / 2013

POWER, WEIGHT TRACTOR AND DRAWBAR PULL RELATIONSHIPS DURING FIELD OPERATIONS

By

HUSSEIN ABBAS JEBUR

B.Sc. Agric. Sc. (Agric. Mechanization), Baghdad University, 1997 M.Sc. Agric. Sc. (Agric. Mechanization), Baghdad University, 2001

Under the supervision of:

Dr. Mubarak Mohamed Mostafa

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Essam Ahmed El-Sahhar

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Ahmed Elnono

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

ABSTRACT

Hussein Abbas Jebur: Power, Weight Tractor and Drawbar Pull Relationships During Field Operations. Unpublished Ph. D. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2013.

The general objectives of this study were to investigate the performance characteristics of a farm tractor during ploughing (chisel plough) and sowing (seed drill) using variable weights (from 0 to 500 kg) on the rear tractor wheels, and different traveling speeds (from 2.78 to 5.68 km/h). The plowing depths were (15-20 cm), and the average moisture content was (20.15 %). The soil texture was found to be a silty clay. The rear tier sizes of the tractor and inflation pressure were 16.9/14-38 and 150 kPa, respectively. The study was concentrated on the rate of fuel consumption, required power, specific energy, drawbar pull, tractor wheel slippage, tractive efficiency, effective field capacity and field efficiency. The obtained results, for the range of tests, showed that the use of 500 kg weight on the tractor rear wheel at 3.1 km/h traveling speed produced the highest value (74.4 %) of tractive efficiency, in case of chisel plough operation, and (in the mean time) the wheel slippage, filed efficiency, fuel consumption, required power, specific energy were 7.46 %, 80.22%, 15.11 l/h, 46.58 kW, and 43.13 kW.h/fed, respectively. While in case of seed drill operation, the use of 500 kg weight at 3.07 km/h traveling speed produced the highest value (57.7 %) of tractive efficiency, and while the wheel slippage, filed efficiency, fuel consumption, required power, specific energy were 2.84 %, 76.55 %, 4.63 l/h, 14.27 kW, and 8.25 kW.h/fed, respectively. In general, the traveling speed and the weight on the rear tractor wheels were the most important factors that affecting the drawbar pull and the specific energy.

Key words: Tractor, Energy, Chisel plow, Seed drill, Weight.

ACKNOWLEDGEMENT

First of all, thanks to **ALLAH** for his blessing

I wish to express my deep appreciation and gratitude to **Prof. Dr. Mubarak M. Moustafa**, who not only served as my principal supervisor but also provided invaluable support, and encouragement throughout the work.

I wish to express my deepest thanks and appreciation to **Prof. Dr. Essam A. El-Sahhar,** for his sincere supervision, encouragement, guidance and constructive criticism through this work was under taken.

I want to express my sincere gratitude and appreciation to **Prof. Dr. Mahmod A. Elnono,** for his kind supervision, problem suggestion, continuous encouragement and valuable advices throughout this work.

Special thanks to **Dr. Mahmod A. El-Attar,** Senior Researcher of Agricultural Engineering Research institute for helping me to finish my field experiments at farm of El-Gemmeza Agricultural Station, El-Garbia Governorate.

Finally, I wish to express my deepest appreciation to my family (spirit of my father), my mother, my wife, and my children, for their continuous encouragement and support.

Hussein A. Jebur

CONTENTS

Subject	Page
List of Tables	iii
List of Figures	iv
List of abbreviations	vi
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	
2-1- traction	3
2-2- Factors affecting traction	4
2-2-1- Traction conditions	4
2-2-2- Slip of drive wheel	7
2-2-3 Rolling Resistance	10
2-2-4 Ballasting (Load on drive wheel).	11
2-2-5 Drawbar pull.	18
2-3 Tractive efficiency	21
2-4 Effective capacity and efficiency	24
2-5 Fuel consumption	26
2-6 Energy requirements	28
2-7 Transportation	33
3- MATERIALS AND METHODS	35
3-1- Site of field experiment	35
3-2- Materials	35
3-3 Methods: (Parameters Measurements)	38
3-3-1 Traveling speed	38
3-3-2 Determination fuel consumption	38
3-3-3 Drawbar Specific fuel consumption	39
3-3-4 Soil physical properties	39
3-3-5 Wheel slippage	40
3-3-6 Determination the effective field capacity and efficiency	41
3-3-7 Determination the rolling resistance (RR)	42
3-3-8 Determination the tractive force	42
3-3-9 Tractor power balance	42

3-3-10 Tractive efficiency	43
3-3-11 Consumed Energy	43
3-3-11-1 Required engine power	43
3-3-11-2 Specific Energy	44
4- RESULTS AND DISCUSSION	45
4-1- Effect of forward speed and different weight on rear tractor	
wheel on the performance of (chisel plough) operation	46
4-1-1 Rolling resistance	46
4-1-2 Drawbar pull and wheel slip	47
4-1-3 Relationship between Drawbar pull and wheel slip	49
4-1-4 Tractive efficiency	50
4-1-5 Effective field capacity and efficiency	52
4-1-6 Fuel consumption and drawbar specific fuel consumption	53
4-1-7 Required engine power and specific energy	55
4-2 Effect of forward speed and different weight on rear tractor	
wheel on the performance of (seed drill) operation	56
4-3 comparison between three roads (field, dusty and asphalt) at a	
transport operation	65
4-3-1 Rolling resistance	65
4-3-2 Drawbar pull and wheel slip	66
4-3-3 Tractive efficiency	68
4-3-4 Effective field capacity and efficiency	69
4-3-5 Fuel consumption and drawbar specific fuel consumption	70
4-3-6 Required engine power and specific energy	73
4-4 The comparison between tractor performance work with and	
without ballast	75
4-4-1 Slip ratio and drawbar pull	75
4-4-2 Rolling resistance force	76
4-4-3 Power losses, weight ballast and fuel consumption	78
5- SUMMARY AND CONCLUSION	81
6- REFERENCES	89
7- APPENDIX	106
ARABIC SUMMARY	1

LIST OF TABLES

Table No.	Subject	page
1	The experimental site soil mechanical analysis.	39
2	The bulk density and moisture content of soil	
	undertaken in the Soil Laboratory of the Agricultural	
	Research.	40
3	Parameter of tractor performance characteristic with	
	chisel plough operation.	106
4	Parameter of tractor performance characteristic with	
	seed drill operation.	107
5	Tractor performance characteristic with trailer	
	operation on field surface.	108
6	Tractor performance characteristic with trailer	
	operation on dusty surface.	109
7	Tractor performance characteristic with trailer	
	operation on asphalt surface.	110
8	Effective field capacity and efficiency for trailer	
	operation.	110

LIST OF FIGURES

Figure No.	Subject	Page
1	Rear view of the chisel plow	37
2	Rear view of the seed drill	37
3	Side view of the trailer	37
4	Effect of traveling speed on and different weights	
	on rolling resistance during ploughing.	47
5	Effect of traveling speed and different weights on	
	drawbar pull and wheel slip during ploughing.	48
6	Relationship between drawbar pull and wheel slip	
	during ploughing.	49
7	Effect of traveling speed and different weights on	
	tractive efficiency during ploughing.	51
8	Relationship between tractive efficiency and	
	slippage percentage during ploughing.	51
9	Effect of traveling speed and different weights on	
	effective field capacity and field efficiency during	
	ploughing.	53
10	Effect of traveling speed and different weights on	
	fuel consumption and drawbar specific fuel	
	consumption during ploughing	55
11	Effect of traveling speed and different weights on	
	power requirement and specific energy during	
	ploughing.	56
12	Effect of traveling speed on and different weights	
	on rolling resistance during sowing.	57
13	Effect of traveling speed and different weights on	
	drawbar pull and wheel slip during sowing.	58
14	Relationship between drawbar pull and wheel slip	
	during sowing	59
15	Effect of traveling speed and different weights on	
	tractive efficiency during sowing.	60

16	Effect of traveling speed and different weights on	
	effective field capacity and field efficiency during	
	sowing.	62
17	Effect of traveling speed on fuel consumption and	
	drawbar specific fuel consumption during sowing	64
18	Effect of traveling speed and different weights on	
	required engine power and specific energy during	
	sowing.	64
19	Effect of traveling speed and different weights on	
	rolling resistance in case of using trailer for three	
	surfaces	66
20	Effect of traveling speed and different weights on	
	drawbar pull during transportation for three surfaces	
		67
21	Effect of traveling speed and different weights on	
	slip wheel during transportation for three surfaces	68
22	Effect of traveling speed and different weights on	
	tractive efficiency with all traction surfaces types	69
23	Effect of traveling speed and different weights on	
	effective field capacity and field efficiency	70
24	Effect of traveling speed and different weights on	
	fuel consumption with all traction surface types	72
25	Effect of traveling speed and different weights on	
	drawbar specific fuel consumption with all traction	
	surface types	72
26	Effect of traveling speed and different weights on	
	required engine power with all traction surface	
	types.	74
27	Effect of traveling speed and different weights on	
	Specific energy with all traction surface types	74
28	Slip and drawbar pull ratio comparison between	
	ploughing and sowing operation	76

29	Rolling resistance force comparison (ballasted,	
	Unballasted)	77
30	Effect of traveling speed on fuel consumption at	
	power losses without ballast	79
31	Effect of traveling speed on fuel consumption at	
	power losses with 300 kg ballast	79
32	Effect of traveling speed on fuel consumption at	
	power losses with 500 kg ballast	80

LIST OF ABBREVIATIONS

Abbreviation	Definition	Page No.
TS	Traveling speed, Km/h.	38
X	traveled distance, m.	38
t	Traveled time, s.	38
3.7	Volume of consumed fuel in glass bulb,	
V	(ml)	39
t	Time of running the test, (sec)	39
EC	Rate of volumetric fuel consumption,	
FC	$(L.h^{-1}).$	39
Dece	Drawbar specific fuel consumption,	
D.S.FC	(l/kW.h)	39
P	drawbar power	39
BD	Soil bulk density (G/cm ³)	40
\mathbf{W}_{d}	Dry soil mass (g)	40
$T_{\rm v}$	Total soil volume (cm ³)	40
Mc	Soil moisture content	40
\mathbf{W}_{w}	Wet soil mass, gm	40
$\mathbf{W}_{ ext{d}}$	Dry soil mass, gm	40
S	Wheel slip, %	40
TS_2	Traveling speed with load km/h	40
TS_1	Traveling speed without load km/h	40
f	Field efficiency,%	41
$\mathrm{E}_{\mathrm{f.c}}$	Effective field capacity, fed/h	41
$T_{\mathrm{f.c}}$	Theoretical Field capacity, fed/h	41
P_{db}	Drawbar power (kW)	43
P_{rr}	Rolling resistance power (kW)	43
P_{sl}	Power consumed by slip (kW)	43
TE	Tractive efficiency %	43
D E D	Requirements engine power from Fuel	
R.E.P	consumption; kW	43

\cdots_f	Density of the fuel; Kg/L (for diesel fuel =	
	0.85 Kg/L)	43
	Lower calorific value of fuel Kcal/Kg;	
L.C.V	(average L.C.V of diesel fuel is 10 ⁴	
	Kcal/Kg)	43
427	Thermo - Mechanical equivalent; Kg m/	
	Kcal	43
	Thermal efficiency of the engine (assumed	
th	to be 40% for diesel engine)	43
	Mechanical efficiency of the engine	
m	(assumed to be 80% for diesel engine).	44
	Specific energy, kW.h/fed. While, in case	
SE	of using trailer operation unit of specific	
	energy will be (kW.h/ton)	44
$\mathrm{E}_{\mathrm{f.c}}$	Effective field capacity, fed/h or ton/h	44
\mathbb{R}^2	Regression of determination	

1. INTRODUCTION

Tractor is the main source of power at the farm and its population in a region is a good indicator of level of that area. The tractor is considered the hub of agricultural mechanization as it can be used to operate t agricultural implements, and its power on farm will continue to be an absolute necessity for increasing agricultural production. It is useful for field work, materials handling, and processing operation on farm.

Today tractor has become the most important prime move for completion of agricultural operation timely and its alleviate the drudgery associated with various farm operations and making the farm practices as pleasant job especially for the younger generation to adopt farming as professions.

Use of tractors ensures better quality of work of farm operations timely completion of farm activities, better management and supervision.

One of the major concerns for farmers today is the cost of farm tractor energy. Energy consumption of farm tractor can be reduced through better designs for tractors, better matching of tractors to implements, and better tractor operating procedures.

As energy is more expensive, its efficient utilization in agricultural production system has become a major concern to agricultural engineer and tractor owners. The reduction of energy consumption in farm operations depends upon the matching of tractors to implement and their operating characteristic. Therefore, the present study aims to investigate, test and evaluate the relationships between power, weight, drawbar pull and traveling speed of farm tractor during ploughing, sowing, and transporting operations using chisel plough, seed drill, and agricultural tractor-trailer, respectively, with the use of different weights on the rear

tractor wheels and different traveling speeds through the following specific objectives:

- 1. Determination the wheel slippage.
- 2. Determination the drawbar pull.
- 3. Determination the tractive efficiency.
- 4. Determination the fuel consumption, required power and specific energy.
- 5. Determination the effective field capacity and field efficiency.