

GEOELECTRIC AND MAGNETIC PROSPECTION TO DELINEATE GROUNDWATER OCCURRENCES AT WADI HAGUL- NORTHWESTERN PART OF EASTERN DESERT- EGYPT

Submitted For

The degree of Philosophy Doctor (Ph. D.) of science in Geophysics (Applied Geophysics)

PHD Thesis

By Osama Hanafy Mahmoud Hamza Salama

B. Sc., Geophysics, Cairo University
M. Sc., Applied Geophysics, Suez Canal University

To

Geophysics Department, Faculty of Science Ain Shams University

Supervised By:

Prof. Dr. Mahdy Mohamed Ahmed Abd El-Rahman

Late Prof. of geophysics, Geophysics Department, Faculty of Science, Ain Shams University, Cairo.

Prof. Dr. Salah El- Deen A. Mousa

Prof. of Applied geophysics, Geophysics Department, Faculty of Science, Ain Shams University, Cairo.

Prof. Dr. Abdel - Rady Ghreeb Hassaneen

Late Prof. of geophysics, National Research Institute of Astronomy and Geophysics, Helwan, Cairo.

Prof. Dr. Sultan Awad Sultan Araffa

Prof. of geophysics, National Research Institute of Astronomy and Geophysics, Helwan, Cairo.

Cairo 2014

ACKNOWLEDGMENT

Praise to ALLAH, who aided and guided me to bring forth this thesis to light.

ALLAH first and final should be acknowledged for helping me and my countless thanks will never be sufficient.

I am profoundly grateful and indebted to My Dear Prof. Dr. Salah El din

Abdel Wahab, Prof. of Geophysics, Geophysics department, faculty of science, Ain

Shams University for his generous supervision, professional observations, and
experienced guidance. Also, to my Dear brother Prof. Dr. Sultan Awad Sultan

Prof. of Geophysics, Geoelectric and Geothermic Lab., Geomagnetic and Geoelectric

Department, National Research Institute of Astronomy and Geophysics for all his
supporting, encouraging, guiding and helping me during all stages of this work.

Sincere thanks to the spirits of Prof. Dr. Abdel Rady Gh. Hassaneen Prof. of Geophysics, Geoelectric and Geothermic Lab., Geomagnetic and Geoelectric Department, National Research Institute of Astronomy and Geophysics and Prof. Mahdy Abdel Rahman, Prof. of Geophysics, Geophysics department, faculty of science, Ain Shams University

Also, I would to express my deep gratitude to **Dr. El Said Ragab**, Head of Geomagnetic and Geoelectric Department, National Research Institute of astronomy and Geophysics (NRIAG), Helwan, and to my dear brothers **Dr. Hany Salah Mesbah**, **Dr. Mamdouh Mohamed Soliman**, and **Dr. Usama Saad Masoud** all for their continuous encouragement, patience, guidance and all assistance they provided and supported me during all stages of this work.

Deep thanks to all my colleagues and brothers of the geoelectric and geothermic laboratory (NRIAG) for their valuable help during the field and office work.

OSAMA HANAFY MAHMOUD SALAMA

List of Contents	<u>Page</u>
Acknowledgment	
List of contents	
List of figures	
Chapter (1) - GERENRAL GEOLOGIC SETTING	
1.1. Introduction:	1
1.2 Geomorphology:	3
1.2.1 Wadi Ghweiba:-	3
1.2.2 Wadi El Badaa:-	3
1.2.3 Wadi Okheider:-	3
1.2.4 Wadi El Ramia:-	4
1.2.5 Wadi Tawariq:-	4
1.2.6 Wadi El Naga:-	4
1.2.7 Wadi Hommath:-	4
1.2.8 Wadi Hagul:-	5
1.2.9 The coastal plain:-	5
1.3 Surface Geology:	5
1.3.1 Middle Eocene (E2)	6
a. Hof Mountain Formation	7
b. Ramia Formation	7
c. Suez Formation	7
1.3.2 Upper Eocene (E3)	7
11 \	

a. Wadi Hof Formation	8
b. Okheider mountain	
succession	8
1.3.3 Oligocene (OL)	9
1.3.4 Lower Miocene (M1)	
Sadat Formation:	9
1.3.5 Middle Miocene (M2)	9
a. Hommath Formation	9
b. Wadi Okheider and wadi	
Ghweiba succession	10
1.3.6 Upper Miocene (M3)	10
a. Wadi Okheider Succession	10
b. Hagul Formation	11
1.3.7 Quaternary:-	11
a- Alluvium (AL)	11
b- Wadi deposits (QW)	11
c- Coastal sands (S.S)	11
d- Sabkha (SB)	12
1.4 Surface Structures and Tectonics:	12
1.4.1 Surface structures of the	
study area	12
1.4.2 Tectonic elements of	
Northeastern Egypt	13
A- North Egypt fold-fault belt:	13
1- North Sinai folds and	
associated faults:	13
2- Folds of the northeastern	
and western deserts:	14

3- Sinai hinge belt:	14
4- Central Sinai fault	
(Themed):	15
B- The Suez rift:	15
C- The Cairo-Suez district:	15
D- The Dead Sea fault:	16
1.5. Subsurface stratigraphy	16
1. 6. Climatic conditions:	18
1.6.1 Temperature:	18
1.6.2 Humidity:	18
1.6.3 Rainfall:	18
1. 7. Previous Work	18
1.7. 1. Previous stratigraphic	
study:	18
1.7.2. Previous work on the	
application of remote sensing in	
geology	20
1.7. 3 Previous geophysical and	
structural study	21
Chapter (2) - MAGNETIC	
METHOD	
METHOD	
2.1. Introduction:	24
2.2. Magnetic Data	26
2.2.1. Data acquisition	26
2.2.2. Data corrections:	27

List of Contents	
2.2.3. Data description:	28
2.3. Reduction to The Magnetic Pole	30
2.3.1. Concept of the reduction to	
the pole:	30
2.3.2. Description of the reduced to	
the magnetic pole map	31
2.4. Magnetic Separation	32
2.4.1.Regional anomalies in relation	
to the deep-seated inferences	32
2.4.2. Residual anomalies in relation	
to the shallow-seated features	33
2.5. Magnetic Depth Determination	34
2.5.1. Eular's deconvolution	34
2.5.1.1. Theory of the Eular's	
deconvolution	35
2.5.1.2. Results of the Euler	
deconvolution	36
Chapter (3) - ELECTRIC EVALUATION AND TRANSIENT ELECTROMAGNETIC	
3.1 Electric Resistivity	41
3.1.1 Introduction	41
3.1.2 Theory and basic principles	42
3.1.2.1 Sounding mode	44
3.1.2.2 Profiling- mode	45

45

List of Contents	
3.1.3 Data acquisition	47
3.1.4 Instrument	49
3.1.5 Data interpretation	49
3.2 Transient Electromagnetic (TEM)	53
3.2.1 Introduction	53
3.2.2 Electromagnetic induction	55
3.2.3 Basic concept of TDEM	57
3.2.4.Depth of penetration in TEM	
Surveying	58
3.2.5.TEM data acquisition	59
3.2.6. TEM data interpretation	61
3.2.6.1. (1-D) Quantitative	
interpretation of TEM data	61
Chapter (4) - JOINT INVERSION INTERPRETATION OF TIME DOMAIN ELECTROMAGNETIC (TEM) AND DC RESISTIVITY DATA	
4.1. Introduction4.2. Scaling Relationships Between TEM	64
and DC Resistivity Data. 4.3. Removal of Electrical Static Shift	65
and the Implication for Effective Joint	
DC-TEM Inversion 4.4. Joint Inversion for DC Resistivity	66

and TEM Data	67
4.5. Joint Inversions Sections:	82
4.5.1 Joint inversion cross section	
along profile A-A`	82
4.5.2 Joint inversion cross section	
along profile B-B`	84
4.5.3 Geoelectric cross section along	
profile C-C`	85
4.5.4 Joint inversion cross section	
along profile D-D`	87
4.5.5 Joint inversion cross section	
along profile E-E`	89
4.5.6 Joint inversion cross section	
along profile F-F`	91
4.6. Depth Maps for Joint Inversion	92
4.6.1. Depth map for upper surface	
of shallow aquifer	92
4.6.2. Depth map for lower surface	
of shallow aquifer or upper	
surface of deep aquifer	93
4.6.3. Depth map for lower surface	
of deep aquifer	94
4.7. Isopach Maps for Joint Inversion	95
4.7.1. Isopach map of the shallow	
aquifer	95
4.7.2. Isopach map of the deep	
aquifer	96
4.8. Isoresistivity Maps of Joint Inversion	97

List of Contents	
4.8.1. Isoresistivity map of the shallow aquifer	97
4.8.2. Isoresistivity map of the deep aquifer	98
Chapter (5) - Summary and	
Conclusion	100
References	106
Arabic summary	117

<u>List of Figures</u>	<u>Page</u>
Chapter (1) – GENERAL GEOLOGIC SETTING	
Fig. (1.1): Location Satellite image of the area under investigation. Fig. (1.2): Geologic map of the northwestern part of the Gulf	2
of Suez (modified after the Egyptian Geological Survey, 1999).	6
Fig. (1.3): The main tectonic elements in northeast Egypt (After Moustafa and Khalil 1994)	14
Fig. (1.4): Description of borehole no.1 (EGSMA,1999)	17
Chapter (2) – MAGNETIC METHOD	
Fig. (2.1): Geometrics G-858 Magnetometer. Fig. (2.2): The ENVI-MAG total field kit and its	26
components.	27
Fig. (2.3): Location map of magnetic stations	28
Fig. (2.4): Total intensity magnetic map of Wadi Hagul area Fig. (2.5): Total intensity magnetic map reduced to the pole	29
of Wadi Hagul area Fig. (2.6): Low pass filter (regional) map of Wadi Hagul	31
area Fig. (2.7): High pass filter (residual) map of Wadi Hagul	33
area Fig. (2.8): Euler solutions using structural index 0 of Wadi	34
Hagul area Fig. (2.9): Euler solutions using structural index 1 of Wadi	38
Hagul area Fig. (2.10): Euler solutions using structural index 2 of Wadi	39
Hagul area Fig. (2.11): Euler solutions using structural index 3 of Wadi	39
Hagul area	40

J	O				

Fig. (2.12): Basement relief map of Wadi Hagul area	40

40

Chapter (3) – ELECTRIC RESISTIVITY AND TRANSIENT ELECTROMAGNETIC

Fig. (3.1): Common electrical resistivity arrays	43
Fig. (3.2): Dipole-Dipole resistivity array.	46
Fig. (3.3): Diagram showing basic concept of resistivity	
measurement.	47
Fig. (3.4): Location map for the conducted Vertical	
Electrical Sounding (VESes) at the study area.	48
Fig. (3.5): Syscal-R2 Measuring Unit, Converter and the	
battery Iris Company, France).	49
Fig. (3-6): Interpretation of VES station No.53 using	
IPI2WIN Program and calibrated with borehole 1	50
Fig. (3.7): Quantitative interpretation of VES station no.1	
(using IPI2win program)	51
Fig. (3.8): Quantitative interpretation of VES station no.7	
(using IPI2win program)	51
Fig. (3.9): Quantitative interpretation of VES station no.20	
(using IPI2win program)	52
Fig. (3.10): Quantitative interpretation of VES station no.40	
(using IPI2win program)	52
Fig.(3.11): Transmitter current wave-form.	54
Fig. (3-12): Generalized picture of electro- magnetic	
induction process (after Klein and Lajoie, 1980).	55
Fig. (3-13): Console unit of Sirotem MK3 conductivity	
meter	59
Fig. (3.14): Location map of TEM stations conducted at the	
study area.	60
Fig. (3.15): Interpretation of TEM station no.53 using	
Meju's code (DCEMINT, Version 1995)	62
Fig. (3.16): Interpretation of TEM station no.30 using	
Meju's code (DCEMINT, Version 1995)	62