

Al-Azhar University Faculty of Science Botany and Microbiology Department

Biotechnological studies on stevia (Stevia rebaudiana Bertoni)

Thesis Presented to Al-Azhar University for the Degree of Master of Science

In

Plant Biotechnology

By

Mohamed Abd El-Motaleb Abouzaied Ali Shahin B.Sc. in Science (Botany)

Faculty of Science, Al-Azhar University (2009)

Under supervision

Of

Prof. Dr.

AbdEL-Fattah Badr

Professor of Plant Genetics

Botany and Microbiology

Department, Faculty of Science,

Helwan University

Prof. Dr.

Mohamed Sarwat Abd EL-Hady

Professor of Plant Biotechnology

Botany Department,

National Research Centre

Dr.

Mohamed AKmal El-Kholy
Assistant Professor of Plant Cytogenetics
Botany and Microbiology Department,
Faculty of Science
Al-Azhar University
Cairo, Egypt 2013

Acknowledgement

First of all, praise and gratitude to Allah, for helping and directing me to the right way.

I wish to express my deepest gratitude to Prof. Dr. Abd El-Fattah Badr, Professor of Plant Genetics, Botany Department, Faculty of Science, Helwan University, Prof. Dr. Mohamed Sarwat Abd El-Hady, Professor of Plant Biotechnology, Botany Department, National Research Centre, and Assistant Professor. Mohamed AKmal El-Kholy, Doctor of Plant Cytology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, for suggesting the problem and supervising this work.

My deep thanks to all stuff members of plant Biotechnology Unit, (National Research Centre) for assistance and providing the equipment and facilities required to complete this study.

My sincere thanks to all members of Botany and Microbiology Department, Faculty of Science, Al-Azhar University, for facilities offered and co-operation.

I would like to express my deep thanks to my FATHER, MOTHER, SISTERS and BROTHERS.

Mohamed Abd EL-Motaleb Shahin

DEDICATION

I dedicate this work to whom my heart felt thanks: to my father (Abd El-Motaleb), mother (Khadija), brothers (Osama and Amir) sisters (Shrine and Amira) and my future wife for all the support and encouragement they continually offered along the period of my post graduation.

CONTENTS

CONTENTS	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	9
Part I plant tissue culture studies	9
2.1. Propagation.	9
2.1.1. Seed propagation	9
2.1.2. Vegetative propagation.	9
2.1.3. <i>In vitro</i> Micropropagation of <i>Stevia rebaudiana</i>	11
2.1.3.1. Effect of explant type	11
2.1.3.2. Effect of growth regulators on the different growth	13
(shooting and rooting) stages of the explant	
2.2. Callus induction.	25
2.3. Regeneration protocols of <i>S</i> . <i>rebaudiana</i>	30
2.4. Part II Secondary metabolites (Steviol Glycosides) of	31
Stevia plant	
2.4.1. Introduction.	31
2.4.2. Steviol Glycosides (SGs) chemistry	33
2.4.3. Steviol Glycosides in <i>S. rebaudiana</i>	35
2.4.4. Steviol Glycosides biosynthetic pathway	37
2.4.5. Glycoside content plant parts	40
2.4.6. Long Day and leaf Steviol Glycoside concentration	42
2.4.7. Steviol glycosides extraction	43

2.4.8. Steviol glycosides quantification using High	44
Performance Liquid Chromatography (HPLC)	
Part III Molecular studies.	47
2.5.1.	47
Introduction	
2.5.2. Molecular analysis of polymorphism based on RAPD marker	47
3. MATERIAL AND METHODS	50
Part I. Micropropagation experiments	50
3.1. Explant collection	50
3.2. Sterilization procedure and aseptic manipulation	51
3.2.1. Sterilization of plant materials	51
3.2.2. Re-sterilization of the equipment	52
3.2. 3. Autoclaving process	52
3.2.4. Sterilization of culture room and laminar airflow cabinet	52
3.2.5. Maintenance of sterility	53
3.3. Preparation of growth-regulator hormones	53
3.4. Media preparation.	55
3.5. Growth conditions	55
3.6. Subculturing	56
3.7. Shootlets initiation of <i>stevia</i> (Direct organogenesis)	56
3.8. Shootlets Multiplication	58
3.9. Rootlets initiation.	58
3.10. Initiation of callus from leaves and nodal stem	59
3.11. Callus Multiplication.	62

3.12. Shootlets formation (Indirect organogenesis)	62
Part II Estimation of stevioside (Steviol Glycosides)	64
3.1. Sample preparation for High Performance (Pressure)	64
Liquid Chromatography (HPLC) analysis	
3.2. HPLC analysis	64
Part III. Molecular studies	66
3.1. Deoxyribonucleic acid (DNA) Isolation	66
3.2. Polymerase chain reaction (PCR) analysis and random	69
amplification of polymorphic DNA (RAPD) conditions	
3.3. RAPD-PCR Protocol	70
3.4. Agarose gel electrophoresis	71
Data analysis	72
4. RESULTS AND DISCUSSION	72
	73
Part I. Micropropagation results	73
Part I. Micropropagation results	73
Part I. Micropropagation results	73 73
Part I. Micropropagation results	73 73
Part I. Micropropagation results	73 73 76
Part I. Micropropagation results	73 73 76 76
Part I. Micropropagation results	73 73 76 76
Part I. Micropropagation results	73 73 76 76 76
Part I. Micropropagation results	73 73 76 76 76
Part I. Micropropagation results	73 73 76 76 76 84
Part I. Micropropagation results	73 73 76 76 76 84

4.3.1. Comparison between shoot tip and nodal segment	91
explants at different BA and Kin concentrations on shoot	
proliferation of Stevia	
4.3.2. Comparison between the best concentration of each BA	93
and Kin on shoot Proliferation of Stevia	
4.4. Effect of 2,4-D on Leave and nodal segment explants	96
4.4.1. Callus induction.	96
4.4.2. Effect of combination of 1.0 mg/L BA + 2,4-D (0.5, 1.0,	104
2.0 and 4.0 mg/L) concentrations on Leave and nodal segment	
explants	
4.4.3.1. Comparison between leaves and nodal segments on	111
callus induction of <i>Stevia</i>	
1100 G	110
4.4.3.2. Comparison between the best concentration of 2,4-D	112
alone or in combination with 1.0 mg/L BA on callus induction	
of Stevia	
4.5. Indirect organogenesis of <i>Stevia rebaudiana</i> Bertoni	115
A.C. Davidina at a second	122
4.6. Rooting stage	122
4.6.1. Effect of IBA on Stevia rebaudiana	122
Part II. Estimation of steviol glycosides	128
4.1. HPLC analysis for the content of Stevioside and	128
Rebaudioside in <i>stevia</i>	
4.2.1. Estimation of stevioside in <i>ex vitro</i> and <i>in vitro</i> leave	133
samples of stevia	
4.2.2. Estimation of rebaudioside in <i>ex vitro</i> and <i>in vitro</i> leave	134
samples of <i>stevia</i>	

4.3. Comparison of leaves of ex vitro plant and in vitro	136	
plantlets of stevia at stevioside and rebaudioside		
amounts		
4.4. Comparison between in vitro four samples (control,	137	
plantlet, shoot and callus) of stevia at stevioside and		
rebaudioside amounts		
4.5. Comparison of leaves of <i>in vitro</i> shoots and in vitro	138	
plantlets of <i>stevia</i> at stevioside and rebaudioside amounts		
Part III. Molecular analysis		
4.1. Estimation of genetic stability of micro-propagated plants	139	
5. SUMMARY		
6. REFERENCES		
7. ARABIC SUMMARY	174	

LIST OF TABLES

NO	Table		
1	Illustration of different plant hormones and their solvents	54	
2	Composition of media used for shoot proliferation of Stevia		
	rebaudiana		
3	Composition of media used for rooting of Stevia rebaudiana.	58	
4	Composition of medium used for callus initiation of Stevia	60	
	rebaudiana		
5	Composition of medium used for shoot proliferation from leaf	63	
	calli of Stevia rebaudiana		
6	Names and sequences of the 6 used primers	69	
7	Compostion of PCR reaction mixture	70	
8	Compostion of 5X Tris borate buffer (TBE)	71	
9	Compostion of agarose gel used for separation of RAPD products.	71	
10	Effect of surface sterilization with different concentrations of	74	
	NaOCl solution on the survival percentage of <i>S. rebaudiana</i> shoot		
	tips		
11	Means of number of shoots, shoot length (cm.), number of leaves	81	
	and number of nodes of S. rebaudiana as affected by different BA		
	concentrations		
12	Means of fresh weight, dry weight, shoot percentage and	82	
	initiation time of <i>S. rebaudiana</i> as affected by different BA		
	concentrations		

13	Means of number of shoots, shoot length (cm.), number of leaves 8		
	and number of nodes of S. rebaudiana as affected by different		
	Kin concentrations		
14	Means of fresh weight, dry weight, shoot percentage and		
	initiation time of <i>S. rebaudiana</i> as affected by different Kin		
	concentrations		
15	Illustration of the differences between 1.0 mg/L BA and 2.0 mg/L	93	
	mustration of the differences between 1.0 mg/L D11 and 2.0 mg/L		
16	Means of callus percentage, callus intensity and callus nature of <i>S</i> .	101	
	rebaudiana explants as affected by different 2,4- D		
	concentrations		
17	Means of callus fresh weight, callus dry weight and callus	102	
	initiation time of S. rebaudiana explants as affected by different		
	2,4- D concentrations		
18	Means of callus percentage, callus intensity and callus nature of <i>S</i> .		
	rebaudiana explants as affected by different 2, 4- D		
	concentrations in combination with 1.0 mg/L BA		
19	Means of callus fresh weight, callus dry weight and callus	109	
	initiation time of <i>S. rebaudiana</i> explants as affected by different		
	2, 4- D concentrations in combination with 1.0 mg/L BA		
20	Illustration of the differences between 2,4-D alone and 2,4-D in	112	
	combination with 1.0 mg/L BA on callus induction of Stevia		
21	Effect of BA concentrations in combination with NAA on calli	120	
	derived from leaves		
<u> </u>			

22	Means of rooting percentage, initiation time, root number/	
	shootlet and root length (cm.) of <i>S. rebaudiana</i> as affected by	
	different IBA concentrations	
23	Amounts of stevioside and Rebaudioside in five samples	129
24	Amounts of stevioside and Rebaudioside in Ex vitro plant, In	136
	vitro control and In vitro plantlet	
25	Amounts of stevioside and Rebaudioside in <i>in vitro</i> samples	137
	control, plantlet, shoot and callus	
26	Amounts of Stevioside and Rebaudioside in <i>In vitro</i> plantlets and	138
	shoots.	
27	Number of total bands, number of monomorphic bands, number	141
	of polymorphic bands and polymorphism percentage of RAPD	
	primers among <i>Stevia</i> three samples	
•		4.40
28	Survey of the RAPD-DNA fragments of the four primers in three	142
	samples (1) Mother plant, (2) <i>In vitro</i> plantlet, (3) callus, 1= Band	
	presence, 0 = Band absence	

LIST OF FIGURES

Fig	g. Pa	age		
1	Structure of some steviol glycosides			
2	Illustration of common biosynthetic pathway shared by steviol and GA3 synthesis and the subcellular location of key enzymes based on the illustration of Richman and M. Gijzen , (1999)			
3	Transglycosidation of steviol to form steviolmonoside, steviolbioside, stevioside and rebaudioside A. (The European <i>Stevia</i> Association (EUSTAS)) web line	40		
4	Survival percentages of S. rebaudiana shoot tips after surface sterilization with different treatments of NaOCl solution	74		
5	Effect of 1.0 mg/L BA on shoot tip (A) and nodal segment explants (B)	83		
6	Effect of 2.0 mg/L Kin on nodal segment (A) and shoot tip (B) explants	90		
7	Effect of 1.0 mg/L BA (A) and 2.0 mg/L Kin (B) on multiple shoot proliferation	95		
8	Effect of 2.0 mg/L 2,4-D on callus induction of nodal segment (A) and leaf (B) explants	103		
9	Effect of 1.0 mg/L BA + 1.0 mg/L 2,4-D on	110		

	11: -1	
	callus induction of leaf (C) and nodal segment	
	explants for (D)	
10	Effect of 2,4-D alone (A) and 2,4-D in	
	combination with 1.0 mg/L BA (D) on callus	
	induction	
11	Effect of 0.5 mg/L BA + 1.0 mg/L NAA on	121
	callus of leaves	
12	Effect of 0.5 mg/L IBA on root induction	127
13	HPLC figures of Stevioside & Rebaudioside-A	130
	Standard	
14	HPLC figures of stevioside and rebaudioside-	132
	A content of five samples of stevia [Mother	
	plant (A), Control (B), Plantlet (C), Shoot (D)	
	and Callus (E)]	
15	Illustration amount of stevioside in ex vitro and	133
	in vitro samples of Stevia	
16	Illustration amount of rebaudioside-A in ex	134
	vitro and in vitro samples of Stevia	
17	A photograph illustrating the banding profile	141
	produced by the six RAPD primers in the three	
	plant samples i.e. mother plant, in vitro plantlet	
	and callus of Stevia	

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation	Expression
A	Adenine
AC	Activated charcoal
AdSO ₄	Adenine sulphate
AUFS	Absorbance units full scale
BA	Benzyl adenine
BDS	base deactivated silica
С	Cytosine
°C	Celsius degree (degree centigrade)
CH ₂ Cl ₂	Dichloromethane
cm	Centimeter
CTAB	Cetyltrimethyl ammonium
	bromide
ddH ₂ O	Double distilled water
2,4-D	Dichlorophenoxy acetic acid
DNA	Deoxyribonucleic acid
dNTPs	Deoxyribonucleotide triphosphate
dw	Dry weight
EDTA	ethylenediaminetetraacetic acid
EtOH	Ethanol
EUSTAS	European Stevia Association
G	Guanine

LIST OF SYMBOLS AND ABBREVIATIONS

	C
g	Gram
GA_3	Gibberillic acid
GC	Gas chromatography
GC-MS	Gas chromatography-mass
	spectrometry, a chemical analysis
	technique
gdw	Gram dry weight
GGPP	Geranylgeranyl diphosphate
HPLC	High Performance (Pressure)
	Liquid Chromatography
IAA	Indole-3-acetic acid
IBA	Indol-3-butyric acid
2iP	N6– (2- isopentyl) adenine
IPP	Isopentyl diphosphate
JECFA	Joint FAO/WHO Expert
	Committee on Food Additives
Kin	Kinetin
KPa	kilobar
L	Liter
LLOD	Lower Limit Of Detection
Lux.	Unit of light intensity
M	Molarity
mg	Milligram