

HIGH SENSITIVITY C-REACTIVE **PROTEIN IN ASTHMA**

Thesis Submitted in Partial Fulfillment of the Master Degree

In

Chest Diseases

Bv

Gamalat Mohamed awad

(M.B.B.CH.,)

Supervisors

Prof. Dr.

HODA ALI ABU YOUSSEF

Professor of chest diseases –Chest **Department Faculty of Medicine** Cairo University

Prof. Dr.

SHERIF NASEH AMEN

Professor of Clinical Pathology Faculty of Medicine Cairo University

Dr.

IRENE MOHAMED SABRY

Lecturer of chest diseases – Chest Department **Faculty of Medicine** Cairo University

> **FACULTY OF MEDICINE CAIRO UNIVERSITY** 2010

دراسة مستوى بروتين (ج) التفاعلي عالى الحساسية في مرضى الربو الشعبي

رسالة مقدمة

توطئت للحصول على دمرجته الماجسنير

ف*ي* الأهراض الصدرية

من

الطبيبة/ جمالات محمد عوض

بكالوريوس الطب والجراحة

لِهُ فِي اللَّهِ مِنْ اللَّهِ مِلَّالِمِي مِنْ اللَّهِ مِ

الاستاذ السدكتور

شريف ناصح أمين

أَسْتَاذَ الباثولوجيا الإكلينيكيّةُ كلية الطب — جامعة القاهرة

الاستاذاك دكتور

هدى علي أبو يوسف

أُستاذ الأُمراض الصدرية كلية الطب – جامعة القاهرة

الحكتور

إيرين محمد صبرى

مدرس الأمراض الصدرية كلية الطب — جامعة القاهرة

> كلية الطب جامعة القاهرة ٢٠١٠

Acknowledgement

To ALLAH every thing in life is resumed, in this work, he has helped me a lot, if only one to be thanked, Allah is the first and the last, also those offered by Allah to advice and guide have to be thanked.

I wish to express my deepest gratitude to Prof. Dr. Hoda Ali Abu Youssef, Professor of Chest Diseases, Cairo University for her sincere guidance, Kind supervision, Continuous encouragement through the whole work

I am very grateful to Prof. Dr. Sherif Naseh Amen, Professor of Clinical Pathology, Cairo University, for his precious supervision.

I am very grateful to Dr Irene Mohamed Sabry Lecturer of Chest Diseases Cairo University, for her constant assistance and valuable support.

I wish to express my deepest thanks to my Colleagues in Al Mahala Chest hospital for their kind support and valuable assistance.

I wish to express my deepest thanks to my Family who were always my back bone.

CONTENTS

	Page
> Contents —	i
> List of Tables —	——ii
> List of Figures —	iv
> List of Abbrevations—	V
INTRODUCTION AND AIM OF THE WORK	1-3
REVIEW OF LITERATURE	
> ASTHMA	4
> ACUTE PHASE PROTEIN	 70
> THE IMPACT OF C-REACTIVE PROTEIN IN	
BRONCHIAL ASTHMA	95
SUBJECTS AND METHODS	102
RESULTS —	108
DISCUSSION	123
SUMMARY & CONCLUSION	132
REFERENCES	135
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Review of literature	Page
Table (1):	Levels of asthma control—	38
Table (2):	Management approach based on control for children older than 5 years, adolescents and adults.	39
Table (3):	Estimated equipotent daily doses of inhaled glucocorticosteroid—	4 1
Table (4):	Severity of Asthma Exacerbations—	57
Table (5):	Anti-asthma drugs in pregnancy: The food and drugs administration (FDA) use-in-pregnancy ratings for specific asthma drugs	64
Table (6):	CRP responses in diseases—	 79
Table (7):	Routine clinical uses of CRP measurement—	80
Table No	Results	Page
Table (8):	Comparison between ages of the studied groups———	108
Table (9):	Comparison between Sex distribution in the studied groups—	109
Table (10):	Comparison between BMI in the studied groups———	—110
Table (11):	Comparison between PFT before and after the use of bronchodilators in asthmatic patients	—111
Table (12):	Comparison between complaints in controlled and uncontrolled Asthmatic patients	112
Table (13):	Comparison between CRP in the studied groups———	113
Table (14):	For comparison between CRP in controlled, uncontrolled Asthmatic patients and control groups—	114
Table (15):	Comparison between CRP in controlled Asthmatic patients and control group	115
Table (16):	For comparison between CRP in uncontrolled Asthmatic patients and control group	115
Table (17):	Comparison between CRP in Asthmatic patients with no inhaled CS, inhaled CS and control groups—	—117

Table No	Results	Page
Table (18):	Comparison between CRP in Asthmatic patients with no-inhaled CS and control group—	<u> </u>
Table (19):	Comparison between CRP in Asthmatic patients with inhaled CS and control group—	118
Table (20):	Correlation between CRP and FEV1% —	—119
Table (21):	Correlation between CRP and FEV1/FVC%—————	120
Table (22):	Correlation between CRP and FEF 25-75%—————	—121
Table (23):	Correlation between CRP, age and BMI in Asthmatic patients and control group.	—122

LIST OF FIGURES

Figure No.	Review of literature	Page
Figure (1):	Molecular structure and morphology of human CRP.	- 74
Figure No	Results	Page
Figure (2):	Mean age of the two groups—	
Figure (3):	Sex distribution among the two groups—	-109
Figure (4):	Mean BMI in the two groups—	-110
Figure (5):	Mean FEV1%, FEV1/FVC% and FEF25-75 % before and after the use of bronchodilator in Asthmatic patients—	-111
Figure (6):	Prevalence of complaints in controlled and uncontrolled Asthmatic patients—	-112
Figure (7):	Mean CRP in the two groups	-113
Figure (8):	Representing mean CRP in controlled, uncontrolled Asthmatic patients and control group—	-114
Figure (9):	Controlled Asthmatic patients showed statistically significant higher values than control group.	-116
Figure (10):	Uncontrolled Asthmatic patients showed statistically significant higher values than control group—	-116
Figure (11):	Mean CRP in Asthmatic patients with no-inhaled CS, inhaled CS and control groups—	-118
Figure (12):	Negative correlation between CRP and FEV1%————————————————————————————————————	-119
Figure (13):	Negative correlation between CRP and FEV1/FVC%———	-120
Figure (14):	Correlation between CRP and FEF 25-75%	-121

LIST OF ABBREVATIONS

A1AT : Alpha -1 antithypsin

A1P1 : Alpha-1 proteinase in hibitar BAL : Bronchoalvealar lavage

BMI : Body mass index CCR-3 : Chemokin receptar-3

COPD : Chronic obstructive pulmonary disease

COX-2 : Cyclo oxygenase 2
CRP : C-Reactive protein
Cyst T1 : Cysteinyl- leukotriene-1

DIC : Disseminated intravascular coagulation

DVT : Deep venaus thrombosis
 ECP : Eosinophil cationic protien
 ESR : Erythrocyte sedimentation rate
 FCγ : Crystellisable fragments gamma
 FDA : Food and drug adminstration

Fe Co : Fraction of exhaled carbon monoxide FEF 25% : Forced expiratory flow at 25% of FVC FEF 75% : Forced expiratory flow at 75% of FVC FEV1 : Forced expiratory volume in 1st second

FeNO : Fraction of exhaled nitric oxide

FVC : Forced vital capacity

GERD : Gastro-esophageal reflux disease

GM-CSF : Granulocyte- macro phage colony-stimulating factor

HS-CRP : High-sensitivity C-reactive protein ICAM-1 : Intracellular adhesion molecule-1

ICS Inhaled corticosteraids IFN-γ Interferon gamma Ig-E Immunoglobulin E IL-10 interleukin 10 IL-3 interleukin 3 IL-4 interleukin 4 IL-5 Interleukin 5 Interleukin 6 IL-6 IL-8 interleukin 8

IL-1° : Interleukin-1 alpha IL-1B : Interleukin-1 beta

LABA; Long acting beta-2 agonists LDL: Low-density lipprotein

LTC4 : Leukotriene C4
LTD4 : Leukotriene D4
LTE4 : Leukotrine E4
MB : Mannose-binding
MBL : Mannose-binding lectin
MBP : Mannan-binding protein

MCP-4 : Macrophage chemoattractant protein 4

MDI : Metered dose inheler NGF : Nerve growth factor

NSAID : Non steroidal anti-inflammatory drugs

PAF : Platelet activating factor

PaCo₂ : Arterial tension of carbon dioxide

PaO₂ : Arterial oxygen tension

PDGF : Prostaglandin derived grawth factor

PE : Pulmonary embolism
PEF : Peak expiratory flow
PGD2 : Prostaglandin D2

RSV : Respiratory syncytial virus
SAA : Serum amyloid A protein
SAP : Serum amyloid P component
SaO2% : Arterial oxygen saturation percent
TGF-β : Trans forming growth factor –beta
TH1 : T-helper cell type I lymphocyte
TH2 : T-helper cell type 2 lymphocyte

TLR-2 : Toll-like receptor

TNF-α : Tumour necrosis factor-alpha US : United states of America.

VCAM-1 : vascular cell adhesion molecule-1 VEGF : vascular endothelial grawth facto

VLA : Very late antigen

VLDL : Very-low –density lipoproteins WHO : World Health ovganization

INTRODUCTION

Asthma is a chronic inflammatory disorder of the airways in which many cells and molecular elements play a role. The chronic inflammation causes an associated increase in airway responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness and coughing particularly at night or in the early morning. These episodes are usually associated with widespread but variable airflow obstruction that is often reversible either spontaneously or with treatment. (GINA 2008).

Asthma is characterized by airway hyper responsiveness and inflammation in which various cells (such as eosinophils, neutrophils, macrophages and T lymphocytes predominantly of the CD4+ type), cytokines and mediators play a role.

Besides local inflammation, systemic inflammation is present in asthma as shown by increased levels of plasma fibrinogen and serum α a myloid A *(Jousilahti et al., 2002)*.

Serum levels of the well known inflammatory marker C- reactive protein (CRP) can be simply and inexpensively measured in order to assess systemic inflammation. However, standard assays for CRP, with a lower detection limit of 3-8 mg L⁻¹, lack the sensitivity required to determine levels of inflammation within the normal range (*Rider*, 2001).

Recently, high- sensitivity assays for CRP (hs-CRP) have become available in clinical laboratories.

Measurement of hs. CRP levels has suggested the involvement of low- grade systemic inflammation in several disorders, such as cardiovascular disease and diabetes mellitus Serum hs-CRP levels can be a prognostic marker for the development of diabetes mellitus *Pradhan et al 2001* or future cardiovascular events. (*Ridker et al 1997*).

Furthermore, a population based study showed associations of increased levels of serum hs-CRP with a high frequency of airway hyper responsiveness and low forced expiratory volume in one second (FEV1) among subjects without heart disease suggesting that systemic inflammation may be associated with respiratory impairment, (Kony et al 2004.

Another epidemiological study showed that elevated levels of hs-CRP correlate significantly with respiratory symptoms and with prevalence of non allergic asthma. *(Olafsdottir et al 2005)*

Thus, hs-CRP could theoretically also be a useful tool for detecting systemic inflammation in asthma, indeed an association between serum hs-CRP level and severity of asthma has been suggested. (Savykoski et al 2004).

AIM OF THE WORK

o measures the serum levels of hs-CRP of asthmatic patients with and without inhaled corticosteroid treatment compared to those of healthy controls.

ASTHMA

Definition of asthma

Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role, in particular mast cells, eosinophils, T-lymphocytes, macrophages, neutrophils, and epithelial cells. The chronic inflammation is associated with airway hyper responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread, but variable, airflow obstruction within the lung that is often reversible either spontaneously or with treatment, (GINA,2008).

THE BURDEN OF ASTHMA

Prevalence, Morbidity, and Mortality

Asthma is a problem worldwide, with an estimated 300 million affected individuals. Despite hundreds of reports on the prevalence of asthma in widely differing populations, the lack of a precise and universally accepted definition of asthma makes reliable comparison of reported prevalence from different parts of the world problematic, (Masoli *et al.*, 2004).

Nonetheless, based on the application of standardized methods to measure the prevalence of asthma and wheezing illness in children and adults, it appears that the global prevalence of asthma ranges from 1% to 18% of the population in different countries, (Yan *et al.*,2005).

There is good evidence that asthma prevalence has been increasing in some countries and has recently increased but now may have stabilized in others. (Garcia-Marcos et al., 2004).

The World Health Organization has estimated that 15 million disability-adjusted life years (DALYs) are lost annually due to asthma, representing 1% of the total global disease burden. Annual worldwide deaths from asthma have been estimated at 250,000 and mortality does not appear to correlate well with prevalence, (Beasley, 2004)

Social and Economic Burden.

Absence from school and days lost from work are reported as substantial social and economic consequences of asthma. analyses of economic burden of asthma, attention needs to be paid to both direct medical costs (hospital admissions and cost of medications) and indirect, non medical costs (time lost from work, premature death)

• The costs of asthma depend on the individual patient's level of control and the extent to which exacerbations are avoided. (GINA,2008).