MICROORGANISMS AS A TOOL FOR DIAGNOSIS OF SOME SOIL POLLUTANTS

 $\mathbf{B}\mathbf{y}$

WISAM MOHAMMED ABD AWAD

B.Sc. Agric. Sci. (Soil Sciences and Water Resources), Fac. Agric., Baghdad Univ., 2005.

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Soil Science)

Department of Soil Sciences
Faculty of Agriculture
Cairo University
EGYPT

2013

APPROVAL SHEET

MICROORGANISMS AS A TOOL FOR DIAGNOSIS OF SOME SOIL POLLUTANTS

M.Sc. Thesis
In
Agric. Sci. (Soil Science)

 $\mathbf{B}\mathbf{y}$

WISAM MOHAMMED ABD AWAD

B.Sc. Agric. Sci. (Soil Sciences and Water Resources), Fac. Agric., Baghdad Univ., 2005.

APPROVAL COMMITTEE

Dr. MOHAMED EL-SAYED MOSTAFA EL-HADADProfessor of Agric. Microbiology, Fac. Agric., Ain Shams University
Dr. MAHER ABDEL-MOHSEN ABDEL-HAMIDProfessor of Soil Sciences, Fac. Agric., Cairo University
Dr. MOHAMED ABDEL-ALIM ALYProfessor of Agric. Microbiology, Fac. Agric., Cairo University
Dr. REDA RAGAB MOHAMED SHAHIN Professor of Soil Sciences, Fac. Agric., Cairo University

SUPERVISION SHEET

MICROORGANISMS AS A TOOL FOR DIAGNOSIS OF SOME SOIL POLLUTANTS

M.Sc. Thesis
In
Agric. Sci. (Soil Science)

 $\mathbf{B}\mathbf{y}$

WISAM MOHAMMED ABD AWAD

B.Sc. Agric. Sci. (Soil Sciences and Water Resources), Fac. Agric., Baghdad Univ., 2005.

SUPERVISION COMMITTEE

Dr. REDA RAGAB SHAHIN

Professor of Soil Science, Fac. Agric., Cairo University

Dr. HASSAN AHMED KHATER

Professor of Soil Science, Fac. Agric., Cairo University

Dr. MOHAMED ABDEL ALIM ALY

Professor of Agric. Microbiology, Fac. Agric., Cairo University

ACKNOWLEDGEMENT

All praise and thanks are to ALLAH, the guide and assist for the way

Sincere gratitude from heart and deeply appreciation to **Dr. Reda Ragab Shahin**, Professor of Soil Sciences, Faculty of Agriculture, Cairo University, for supervising the work as well as continues guidence and valuable help throughout the course of study.

I would like to express my sincere thanks and appreciation to **Dr. Hassan AHMED KHATER**, Professor of Soil Sciences, Faculty of Agriculture, Cairo University, for his great guidance and generous helping through the course of study, suggesting the topic of this thesis, supervision of the work as well as unlimited encouragement, valuable advices and stimulating criticism.

My deeply thanks to **Dr**., **MOHAMED ABDEL ALIM ALY** Professor of Agric. Microbiology, Faculty of Agriculture, Cairo University for sharing in supervision, sincere helping and him kindly advices.

My deep appreciation to the staff of **Soil Sciences department**, as well as the staff of the **Agriculture Microbiology department**, Faculty of Agriculture, Cairo University.

I would like to acknowledge the staff of the **Faculty of Agriculture Research Park (FARP)**, Faculty of Agriculture, Cairo University for financing this work throughout lab facilities.

Sincere thanks to my Egyptian colleagues in the National Research Center, Dokki. for their help during this work.

Special deep appreciation is given to my mother, and my brother and sister for their help and encouragement.

DEDICATION

I love you all dearly

Name of Candidate: Wisam Mohammed Abd Degree: M.Sc. Title of Thesis: Microorganisms as a Tool for Diagnosis of Some Soil Pollutants

Supervisors: Dr. Reda Ragab Shahin

Dr. Hassan Ahmad Khater Dr. Mohammed Abdel Alim

Department: Soil Science **Branch:**

Approval: / /

ABSTRACT

The objectives of the present work were to determine the diversity of microorganisms in a heavily contaminated soils with heavy metals or pesticides and to identify their most resistant species. Three soil types were selected to represent clay alluvial (FFS), calcareous (WNS) and sewage farm (ARS) soils and subjected to two incubation experiments, one to study the effect of heavy metals (Cd, Zn, Pb and Ni) and the other to study the effect of two pesticides (Harness and Rugby) on the diversity of their microorganisms (bacteria, fungi and actinomycetes). The data of the first experiment showed that Alluvial (FFS) and Wadi-Natrun (WNS) had the highest values of maximum adsorption and fixation capacity of Cd, Zn, Pb and Ni metals. Abu Rawash soil (ARS) recorded the highest numbers of culturable bacterial even with the presence of increasing concentrations of cadmium, lead and zinc followed by alluvial soil (FFS) and calcareous soil (WNS). The bacterial population present in Abu-Rawash (ARS) was relatively more tolerant to Cd toxicity than that for alluvial (FFS) one while Ni toxicity order was: (FFS) >(ARS) > (WNS). A significant positive correlation coefficients were recorded between viable bacterial numbers and activity of microbial enzyme dehydrogenase in all heavy metal contaminated soils. The morphological examination showed that heavy metal resistant bacterial isolates for were Bacillus sp. mostly isolated from Abu-Rawash with one Isolate No. BM+64 was Cocci sp. Isolate BM+48 was the most resistant to heavy metals and was identified as Bacillus cereus/ or B.thuringiensis which was obtained from Abu-Rawash soil (ARS). The highest counts of fungi were noticed in the calcareous soil (MNS) and alluvial one (FFS) treated with Ni. Isolates No. FM01 and FM14 were the most tolerant for the highest concentrations of the applied Zn, Pb and Cd. Three isolates (FM01, FM10 and FM15) were classified as Aspergillus nidulans, while three isolates (FM04, FM08 and FM28) were recognized as Aspergillus fumigates, two isolates (FM09 and FM14) were recognized as Aspergillus flavus. Fungi isolate FM04 (Aspergillus fumigates) was the most resistant to Pb, while isolates FM10 and FM15 both (Aspergillus nidulans) were the most tolerant to Zn. Abu-Rawash (ARS) soils (sewage farm) showed the highest population of actinomycetes at all the highest levels of Cd, Zn and Pb followed by the calcareous (WNS) and normal alluvial (FFS) soils. AM10 was the only one that tolerated the stresses of Zn, Ni, Pb, and Cd at concentrations of 75, 75, 100 and 12

The second incubation experiment showed that The initial concentration of soluble carbon for Harness treatment was higher than that for Rugby. Abu-Rawash sewage farm soil (ARS) had the highest bacterial counts under the stresses of both Rugby and Harness with relatively lower numbers in Harness. The bacterial isolates dominated by *Bacillus spp.* with 60% of short rods bacteria. isolates BP01, BP07 and BP15 tolerated upto 2mg/l of Harness while isolates BP01, BP15 and BP18 tolerated the same level as Rugby. Isolate BP01 was the most tolerant one to both harness and Rugby and it was identified as *Bacillus subtilis*. Abu-Rawash soil (ARS) had the highest fungal counts under the stresses of both Rugby and Harness pesticides. Harness was more toxic to fungi than Rugby in all the investigated isolates. The pesticides resistant fungi isolates were identified as *Aspergillus spp.*, and *Cladosporium spp.* which were found in Abu-Rawash (ARS). The FP03 isolate was identified morphologically as *Aspergillus flavus* which showed the highest tolerance to both Rugby herbicide and Harness nematocide. The counts of actinomycetes in Harness treatment were, generally, lower than that in Rugby in both alluvial (FFS) while the reverse was true in the sewage farm soil (ARS). Harness was more toxic to actinomycetes than Rugby in all the investigated isolates. Actinomycetes isolate AP07 was the most tolerant one to 2.0 mg/l of both Rugby and Harness while AP06 had tolerance to 2 mg/l of Harness and it was identified as *Nocardia spp.*

Key words: Bacterial resistance, Fungi, Actinomycetes, Heavy metals, pesticides, dehydrogenase

CONTENTS

INTRO	ODUCTION
REVII	EW OF LITERATURE
1.Sou	rces of Heavy Metals in Contaminated Soils
2. Fat	e of Heavy Metals in the Soil Environment
3.The	Concentration of Heavy Metals in Soils
a. 1	Lead (pb)
b. 2	Zinc (Zn)
c. (Cadmium (Cd)
d. 1	Nickel (Ni)
4.Eff	ect of heavy metals on soil microbiota
5.Soil	microbiota tolerant to heavy metals
a. \$	Soil bacteria resistant to heavy metals
b. 1	Fungi resistant to heavy metals
c. 1	Actinomycetes resistant to heavy metals
6.Effe	ect of Pesticides on Soil microbiota
a.]	Herbicides
	Fungicides
MATE	CRIALS AND METHODS
1.Soil	locations
a. l	Experimental farm of the Faculty of Agriculture, Cairo
Į	University, Giza (FFS).
b. \$	Sewage farm sandy soil (Abu-Rawash) (ARS)
c. C	alcareous soil (Wadi-Natrun) (WNS)
2.Soil	sampling
3.Soil	analysis
Ch	aracteristic of the tested soils
4.Ads	orption isotherms
Lan	gmuir Model
5. Effe	ect of heavy-metal pollution on soil microbial populations
6.Aqı	ıa-Regia Extractable
	PA - extractable metals
8.Det	ermination of soil dehydrogenase activity
	ct of of pesticide pollution on soil microbial populations

10.	Enumeration and isolation of the heterotrophic
	pulations
	Screening of heavy metals and pesticide resistant
	cteriaPhenotypic identification technique of bacterial and
	ngi isolates
	JLTS AND DISCUSSION
	il characteristics and status of heavy metals
a.	Soil characteristics
b.	Heavy metals adsorption isotherm in the investigated soils
c.	The distribution of Aqua-Regia and DTPA extracted heavy metals in the artificially polluted soils at the end of the incubation experiment
2.	The effect of heavy metals on the community structure of soil biota
3. T	he effect of heavy metals on population of soil bacteria
a.	The effect of heavy metals on culturable soil bacteria
b.	Effect of heavy metals on soil dehydrogenase activity
c.	Screening of heavy metal tolerant bacteria on solid medium
d.	The growth curves of the screened bacteria at maximum tolerable heavy metals concentrations
4.	The effect of heavy metals on soil Fungi population
a	The effect of heavy metals on total count of soil fungi
b	Screening of heavy metal tolerant fungi on solid medium
c.	Morphology and identification of the heavy metals tolerant fungi colonies
d	The growth curves of the screened fungi at maximum tolerable heavy metals concentrations
5. E	ffect of heavy metals on soil Actinomycetes population

a.	The effect of heavy metals on total count of soil	84
	actinomycetes	85 86
6.	Effect of pesticides on soil bacteria	90
7.	Effect of pesticides on soil fungi	97
8.	Effect of pesticides on soil actinomycetes	101
SUM	MARY	107
REF	ERENCES	117
APPI	ENDIX	145
ARA	BIC SUMMARY	

INTRODUCTION

Heavy metals contamination of soil is widespread due to metal processing industries, tannery, combustion of wood, coal and mineral oil, traffic, and plant protection. Metals can exist in the soil solution as free cations (e.g. Cu²⁺, Cd²⁺, Zn²⁺), as soluble complexes with inorganic or organic ligands (e.g. ZnCl⁺, CdCl³⁻, metal citrates) and associated with colloidal material. However, metal toxicity is greatly affected by the physico–chemical nature of the environment and the chemical behavior of the particular metal species in question. The residence of heavy metals (*e.g.* Pb and Hg) in many soil systems is considered to be hundreds or even thousands of years (Hissler and Probst, 2006; Klaminder *et al.*, 2006). Pesticides also have long residence time in the soil which has toxic effects on soil life.

Soil microorganisms, as an essential component of most terrestrial ecosystems, play a critical role in the environment due to their role in cycling mineral compounds and in the decomposition of organic material. Environmental stress caused by heavy metals or pesticides generally decreases the diversity and activity of soil microbial populations, and upsets the ecological balance of population interactions within the soil community. The toxic effects of heavy metals result mainly from the interaction of metals with proteins (enzymes) and inhibition of metabolic processes. Therefore, the use of microbial parameters has been proposed for monitoring soil pollution by heavy metals. Effects of heavy metals on soil microbial communities may be assessed by a variety of methods including the

measurement of microbial biomass and activity or changes in soil microbial community structure. However, microbial communities are influenced not only by heavy metals but also by other environmental factors such as soil pH, temperature, moisture and organic matter quality, e.g., C/N ratio.

So far, many researchers have measured the soil microbial activities as indicators of soil degradation by heavy metals and pesticides. The knowledge about heavy metal resistance capacity generally broadens the insights into the ability of bacteria to inhabit polluted environments, but can also be applied in biotechnology for example as a bioreporter (bio-indicator) or bioremediation purposes. Bacterial bioreporters, which are living microorganisms that produce a specific, quantifiable output in response to target chemicals, take advantage of heavy metal inducible transcription systems and sense bioavailable metals depending on metal flux through the soil. Thus, the bioreporter technology is closely related to the research about heavy metal resistance mechanisms and will be introduced alongside the actual resistance mechanisms.

Therefore, the present study was undertaken, with the soil collected from the agricultural field with different technological activities and amended with a graded, known concentration of metal ions and its combinations and some pesticides in the lab conditions. The survival pattern of the common major groups of indigenous microbial population (bacteria, fungi and actinomycetes) was studied.

The specific aims of the research in this thesis were:

- 1. determining the types and amounts of pollutants prevailing in the soil used in three types of technological activities (intensive agriculture, industrial activities, sewage water disposal).
- 2. identifying the numbers and types of microorganisms (Bacteria Actinomycetes Fungi) in the examined soils from each type of technological activities.
- 3. studying the effect of increasing concentration of soil heavy metals or pesticides on the microbial structure in the studied soils.
- 4. determining the minimum inhibitory concentration from each type of pollutants for Bacteria, Actinomycetes and Fungi isolated from artificially polluted soils.
- 5. isolation and characterizing the heavy metal or pesticide tolerant sp. of bacteria and fungi as bio-indicators.

REVIEW OF LITERATURE

1. Sources of Heavy Metals in Contaminated Soils

Heavy metals occur naturally in the soil environment from the pedogenetic processes of weathering of parent materials at levels that are regarded as trace and rarely toxic (Pierzynski *et al.*, 2000 and Kabata-Pendias and Pendias, 2001). Due to the disturbance and acceleration of nature's slowly occurring geochemical cycle of metals by man, most soils of rural and urban environments may accumulate one or more of the heavy metals above defined background values high enough to cause risks to human health, plants, animals, ecosystems, or other media.

D'Amore *et al.* (2005) stated that heavy metals essentially become contaminants in the soil environments because (i) their rates of generation via man-made cycles are more rapid relative to natural ones, (ii) they become transferred from mines to random environmental locations where higher potentials of direct exposure occur, (iii) the concentrations of the metals in discarded products are relatively high compared to those in the receiving environment, and (iv) the chemical form (species) in which a metal is found in the receiving environmental system may render it more bioavailable. Alloway (1995) and Lombi and Gerzabek (1998) suggested a simple mass balance of the heavy metals in the soil can be expressed as follows:

$$M_{\text{total}} = (M_p + M_a + M_f + M_{\text{ag}} + M_{\text{ow}} + M_{\text{ip}}) - (M_{\text{cr}} + M_l),$$
 (1)

where "M" is the heavy metal, "p" is the parent material, "a" is the atmospheric deposition, "f" is the fertilizer sources, "ag" are the agrochemical sources, "ow" are the organic waste sources, "ip" are other inorganic pollutants, "cr" is crop removal, and "l" is the losses by leaching and volatilization.

It is projected that the anthropogenic emission into the atmosphere, for several heavy metals, is one-to-three orders of magnitude higher than natural fluxes (Lombi and Gerzabek, 1998). Heavy metals in the soil from anthropogenic sources tend to be more mobile, hence bioavailable than pedogenic, or lithogenic ones (Kuo *et al.*, 1983 and Sposito and Page, 1984). Metal-bearing solids *at* contaminated sites can originate from a wide variety of anthropogenic sources in the form of metal mine tailings, disposal of high metal wastes in improperly protected landfills, leaded gasoline and lead-based paints, land application of fertilizer, animal manures, biosolids (sewage sludge), compost, pesticides, coal combustion residues, petrochemicals, and atmospheric deposition (Khan *et al.*, 2008 and Zhang *et al.*, 2010).

Large quantities of fertilizers are regularly added to soils in intensive farming systems to provide adequate N, P, and K for crop growth. The compounds used to supply these elements contain trace amounts of heavy metals (e.g., Cd and Pb) as impurities, which, after continued fertilizer, application may significantly increase their content in the soil (Jones and Jarvis, 1981). Metals, such as Cd and Pb, have unknown physiological activity. Application of certain phosphatic

fertilizers inadvertently adds Cd and other potentially toxic elements to the soil, including F, Hg, and Pb (Raven *et al.*, 1998).

Ling-Yu *et al.* (2010) stated that the accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns. The accumulation of heavy metals in greenhouse soils was higher than others may be due to the heavy applications of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals.

Several common pesticides used fairly extensively in agriculture and horticulture in the past contained substantial concentrations of metals. For instance in the recent past, about 10% of the chemicals have approved for use as insecticides and fungicides in UK were based on compounds which contain Cu, Hg, Mn, Pb, or Zn. Jones and Jarvis, (1981) reported examples of such pesticides are copper-containing fungicidal sprays such as Bordeaux mixture (copper sulphate) and copper oxychloride.

The application of numerous biosolids (e.g., livestock manures, composts, and municipal sewage sludge) to land inadvertently leads to the accumulation of heavy metals such as As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Mo, Zn, Tl, Sb, and so forth, in the soil (DeVolder *et al.*, 2003 and Kaasalainen and Yli-Halla, 2003).

Malarkodi *et al.* (2007) showed that the soils irrigated with the sewage water contained almost all the heavy metals (Pb, Ni, Cd, Cr, Cu and Zn) exceeded the critical limit while those contaminated with electroplating and textile effluents were rich in Ni and Cr.