

Effect of Photodynamic Therapy on Photoaging and Skin Field Cancerization

Thesis

Submitted for the Fulfillment of MD in Dermatology, Venerology and Andrology

By

Dr. Dina Hussein Mohamed Helmy

Ms.C (2010) – Ain Shams University Assistant Lecturer of Dermatology, Venerology and Andrology

Supervised By

Prof. Dr. May Hussein El Samahy

Professor of Dermatology, Venerology and Andrology Faculty of Medicine – Ain Shams University

Prof. Dr. Sahar El Sayed Youssef

Professor of Dermatology, Venerology and Andrology Faculty of Medicine – Ain Shams University

Prof. Dr. Nafissa Mohamed El Badawy

Professor of Pathology
Faculty of Medicine – Ain Shams University

Dr. Gabriella Fabbrocini

Assistant Professor of Dermatology, Venerology and Andrology Faculty of Medicine – Federico II University, Napoli, Italy

Faculty of Medicine
Ain Shams University
2017

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. May Hussein &l Samahy,** Professor of Dermatology, Venerology and Andrology, Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Sahar & Sayed Youssef**, Professor of Dermatology, Venerology and Andrology, Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Mafissa**Mohamed El Badawy, Professor of Pathology,
Faculty of Medicine – Ain Shams University, for her
great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Gabriella Fabbroeini**, Assistant Professor of Dermatology, Venerology and Andrology, Faculty of Medicine – Federico II University, Napoli, Italy, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Dina Hussein Mohamed Helmy

List of Contents

Title	Page No.
List of Tables	4
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the Study	5
Review of Literature	
Skin Aging	6
Skin Field Cancerization	
Photodynamic Therapy	30
Photodynamic Rejuvenation	
Patients and Methods	
Results	118
Discussion	153
Summary	161
Recommendations and Conclusions	
References	164
Appendix 1	215
Appendix 2	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Glogau's photoaging classifation	9
Table (2):	Guidelines for ideal photosensitizer	41
Table (3):	Properties of some photosensitizer approved for PDT treatment	•
Table (4):	Absorption properties and light source dyes l-6	
Table (5):	Protocol for daylight PDT with MA patients with AKs of the face or scalp	
Table (6):	Pre-treatments and combinations surfor aesthetic PDT	
Table (7):	Description of data among patients	118
Table (8):	Description of wrinkles site among patie	ents 119
Table (9):	Comparison between different interver as regard patient satisfaction	
Table (10):	Comparison between different interver as regard patient satisfaction	
Table (11):	Comparison between skin biopsy sat taken from each side of the face before intervention	doing
Table (12):	Comparison between sides as regard bedata before and after intervention	
Table (13):	Comparison between the mean percental improvement in the epidermal thick collagen content and elastin content a both photosensitizers	mess,

List of Tables (Cont...)

Table No.	Title Page	e No.
Table (14):	Subgroup analysis of wrinkles according to its site as regard percentage of change of different items in skin biopsy	
Table (15):	Subgroup analysis of different interventions and their effect on different types of wrinkles based on skin biopsy data	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The Glogau wrinkle scale	10
Figure (2):	Photodamaged skin	12
Figure (3):	This model schematically depicts fact pathogenic relevance for skin ageing	
Figure (4):	Ultraviolet (UV) light-induced mutage as a mechanism of photocarcinogenesi	
Figure (5):	Schema of a photochemical reaction dephotodynamic therapy	•
Figure (6):	Jablonski diagram illustrating some ophysical processes that can occur at molecule absorbs a photon, excited levels, and transitions	fter a state
Figure (7):	Type I and type II reaction in PDT	35
Figure (8):	Proposed mechanism for necrosis by P	DT 39
Figure (9):	Structure of Photofrin, n = 1–9	43
Figure (10):	Chemical formula of ALA (a) and MAI	(b) 45
Figure (11):	Light of an appropriate energy	46
Figure (12):	Absorption spectrum of protoporphyr (PpIX)	
Figure (13):	Structure of methylene blue	54
Figure (14):	Photodynamic therapy for ageing simechanism of action	
Figure (15):	Subepidermal low-echogenic band (Sthickness before (A) and after (B) PDT	MAL-
Figure (16):	Clinical picture for the use of photodyntherapy (PDT) in skin rejuvenation	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (17):	a- 5-Aminolevulinic Acid hydroch 99% b- KOKO DMS® base cream Clas	
Figure (18):	IPL iPulse 200+.	104
Figure (19):	Wrinkle Assessment Scale of periodines	
Figure (20):	Wrinkle Assessment Scale of horizoforehead lines	
Figure (21):	Leica DM2500 microscope connected computer containing an image an program.	alysis
Figure (22):	Stages of treatment session	120
Figure (23):	Patient I 55 years old showing modimprovement of wrinkles on periorbit side treated with ALA-PDT and Lt treated with MB-PDT	tal Rt side
Figure (24):	Patient II 47 years old showing excimprovement of perioribal wrinkles of side treated with ALA-PDT and Lt treated with MB-PDT	on Rt side
Figure (25):	Patient III 52 years old showing modimprovement of forehead wrinkles of half treated with ALA-PDT	on Rt
Figure (26):	Patient IV 42 years showing modimprovement on forehead wrinkles, R treated with ALA-PDT	t half
Figure (27):	Patient V 49 years old showing modimprovement in periorbital wrinkle half treated with ALA-PDT and Lt treated with MB-PDT	s, Rt half

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (28):	Skin biopsy from periorbital site treatment (H & E x40)	
Figure (29):	Periorbital site after treatment with (H & E x40)	
Figure (30):	Periorbital site after treatment with 1 & E x40)	,
Figure (31):	Periorbital site skin biopsy treatment (Masson trichrome x40)	
Figure (32):	Periorbital skin biopsy after trea with ALA (Masson trichrome x40)	
Figure (33):	Periorbital skin biopsy after trea with MB (Masson trichrome x40)	
Figure (34):	Periorbital skin biopsy before trea (Orcein x40)	
Figure (35):	Periorbital skin biopsy after treatment ALA (Orcein x40)	
Figure (36):	Periorbital skin biopsy after treatment MB (Orcein x40)	
Figure (37):	Improvement of dermal thickness in biopsy with different photosensitizers	
Figure (38):	Assessment of change of collagen in biopsy in different interventions	
Figure (39):	Improvement of elastin percentage is biopsy with different photosensitizers	
Figure (40):	Comparison between intervention regard percentage of dermal this change.	ckness

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (41):	Comparison between photosensitiz regard percentage of collagen change	
Figure (42):	Comparison between photosensitiz regard percentage of Elastin change.	
Figure (43):	Comparison between different ty wrinkles as regard percentage of cha skin biopsy items in ALA group	ange of
Figure (44):	Comparison between different ty wrinkles as regard percentage of chaskin biopsy items in MB group	ange of
Figure (45):	Comparison between different ty interventions as regard percentage of of skin biopsy items in forehead w group.	change rinkles
Figure (46):	Comparison between different typinterventions as regard percentage of of skin biopsy items in periorbital wagroup.	change rinkles
Figure (47):	IHC of different cases showing -ve p	
Figure (48):	Local edema two days after proced ALA side.	
Figure (49):	PIH after 2 weeks from session	152

List of Abbreviations

Abb.	Full term
AKs	Actinic Keratosis
	Aminolevulinic Acid
	Activator Protein 1
	Adenosine Triphosphate
	Basal Cell Carcinoma
	Base Excision Repair
<i>Bp</i>	
BRAF	B-Raf Protein
CDKN2A	Cyclin-Dependent Kinase Inhibitor 2A
<i>CL</i>	Cutaneous Leishmaniasis
<i>CPDs</i>	Cyclobutane Pyrimidine Dimmers
<i>CTGF</i>	Connective Tissue Growth Factor
<i>ECM</i>	Extracellular Matrix
<i>ERK</i>	Extracellular Signal-Regulated Kinases
<i>IHC</i>	Immunohistochemistry
<i>JNK</i>	c-Jun Amino Terminal Inase
<i>LED</i>	Light Emitting Diodes
<i>MAL</i>	Methyl Aminolevulinate
<i>MAPK</i>	Mitogen-Activated Protein Kinases
<i>MF</i>	Mycosis Fungoides
<i>MMPs</i>	Matrix Metalloproteinases
NF-kB	Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells
<i>NMSC</i>	Non-Melanoma Skin Cancer
P. acnes	Propionibacterium Acnes
<i>PDT</i>	Photodynamic Therapy
<i>PS</i>	Photosensitizer

List of Abbreviations (cont...)

Abb.	Full term
DTOIL	Thomas Community Community I
	Tumor Suppressor Gene Patched
<i>PTEN</i>	Phosphatase and Tensin Homolog
ROS	Reactive Oxygen Species
<i>SCC</i>	Squamous Cell Carcinoma
SKs	Seborrheic Keratosis
<i>TGF</i>	Transforming Growth Factor
<i>TGF-b</i>	Transforming Growth Factor b
<i>TIMPs</i>	$Tissue\ inhibitor\ of\ Matrix\ Metallo protein as es$
<i>Tn-C</i>	Tenascin C
<i>TP-53</i>	Tumor Protein 53
TSP-1	$Thrombospondin ext{-} 1$
<i>UV</i>	Ultraviolet
VEGF	Vascular Endothelial Growth Factor

ABSTRACT

Our study agrees with the previous studies done by other investigators using photosensitizers other than MB. Our results provide comparable results and further support the effectiveness of PDT in treatment of wrinkles thus photodynamic therapy can offer a good alternative as it provides better final cosmetic result with a non-invasive character.

Also there are advantages of using methylene blue instead of ALA as ALA is more expensive and needs longer contact time with the skin for 3-5 hours unlike methylene blue which is commercially available and needs 5-15 minutes contact with the skin. Also ALA may cause pain and erythema that last for at least 24 hours with residual skin pigmentation.

This study indicates that MB mediated PDT is safe, effective and an economic alternative to ALA in treatment of wrinkles.

Keywords: Propionibacterium Acnes - Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells - Mitogen-Activated Protein Kinases

INTRODUCTION

ging is a frequent problem facing dermatologists in daily practice. It is a multisystem degenerative process that involves the skin and skin support system, with increased risk of developing benign and malignant neoplasms on photoaged skin (Sjerobabski-Masnec and Podujie, 2014).

Chronically sun-exposed skin develops several changes such as roughness, swallowness, dyschromia, wrinkles and fine erythema, telangiectasias lines, and sebaceous gland hypertrophy. These changes are referred to as the photoaging process (*Kohl et al.*, 2011).

Sun-related changes in the skin involve the appearance of elastosis in association with degeneration and decrease of collagen, clinically apparent as yellow discoloration and coarse wrinkles. Histologically accumulated abnormal elastic fibers in the papillary dermis can be detected. As a result of UV-induced hyperplasia of melanocytes or increased melanogenesis, pigmentary alterations like ephelides, lentigines and a diffuse irreversible hyperpigmentation are apparent. Alterations in cutaneous microvasculature such as regression of small blood vessels and neoangiogenesis, resulting in telangiectasias, are seen on chronically light-exposed skin (Szemies et al., 2012).

Treatment of photoaged skin includes photoprotection, medications and procedures to reverse existing damage. Photoprotection employs measures to prevent against UV damage achieved by sunscreens, sun-protective clothing, and sun avoidance (Helfrich et al., 2008).

Reversal of the appearance of aging skin, includes injectable botulinum toxins dermal and fillers. micodermabrasion, non-ablative and ablative laser treatments, topical photosensizers with lasers and light sources, chemical peels, and a diverse array of topical agents, including prescription retinoids and bleaching agents. A combined approach is considered ideal for many patients, because it targets various different regions of the face as well as static and dynamic changes associated with aging (Tierney and Hanke, *2010*).

Topical photodynamic therapy (PDT) has shown to be effective for the treatment of several aspects of skin ageing which includes improvement of fine wrinkles, mottled hyperpigmentation, tactile roughness and sallowness. These results are supported by immunohistochemical analysis that revealed both upregulation of collagen production and increased epidermal proliferation. Neocollagenesis as an indirect dermal effect of PDT is stimulated through cytokine induction (Khol et al., 2010).

PDT is based on a phototoxic reaction caused by a photosensitizer that is activated by light to form reactive oxygen species. In dermatology, PDT is performed using topical precursor molecules of the biosynthetic pathway of heme such as 5-aminolevulinic acid (ALA) or its methyl ester methyl aminolevulinate (MAL). These molecules are then converted in the skin into photoactivatable porphyrins, in particular protoporphyrin IX (PpIX) (Babilas et al., 2010).

Several studies have provided the evidence that PDT has the potential to reduce the carcinogenic potential in areas of field cancerization and promote improvement in certain aspects of photoaging (Morton, 2012). In skin rejuvenation, ablative lasers provide the best results, but post-procedure side effects like redness, hyperpigmentation and hypopigmentation display big drawbacks. PDT skin rejuvenation takes up a middle position between ablative and non-ablative skin rejuvenation, having superiority over ablative by fewer serious side effects and superiority over non-ablative by being achieving better results (Dover et al., 2005).

Numerous light sources including red light, blue light, Pulsed Dye Laser (PDL) and Intense Pulsed Light (IPL) have been used for photodynamic rejuvenation (Freeman et al., 2003; Babilas et al., 2006). Several studies have indicated that IPL devices are suitable for treatment of photodamage (Ruiz-Rodriguez et al., 2002; Kim et al., 2005). A series of full-face IPL-treatments without a photosensitizer resulted in