EFFECT OF DIFFERENT STORAGE CONDITIONS ON THE PROPERTIES AND QUALITY OF ONION BULBS

By

BABIKER ALI ABAKER ESHAG

B. Sc. Agric. Sci. (Agricultural Engineering), Fac. of Agric., Gezira Univ., Sudan, 1999 M. Sc. in Agricultural Engineering, Fac. of Agriculture, Khartoum Univ., Sudan, 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Cairo University
EGYPT

2014

APPROVAL SHEET

EFFECT OF DIFFERENT STORAGE CONDITIONS ON THE PROPERTIES AND QUALITY OF ONION BULBS

Ph.D. Thesis
In
Agric. Sci. (Agricultural Engineering)

By

BABIKER ALI ABAKER ESHAG

B. Sc. Agric. Sci. (Agricultural Engineering), Fac. of Agric., Gezira Univ., Sudan, 1999

M. Sc. in Agricultural Engineering, Fac. of Agriculture, Khartoum Univ., Sudan, 2004

Approval Committee

Dr. ADEL HAMID BAHNSAWY Professor of Agricultural Engineering, Fac. Agric., Benha University
Dr. SAMY MOHAMED YOUNIS Professor of Agricultural Engineering, Fac. Agric., Cairo University
Dr. SAID ABDALLA SHEHATA Professor of Vegetable Crops, Fac. Agric., Cairo University
Dr. MOHAMED HASHEM HATEM Professor of Agricultural Engineering, Fac. Agric., Cairo University

Date: / /2014

SUPERVISION SHEET

EFFECT OF DIFFERENT STORAGE CONDITIONS ON THE PROPERTIES AND QUALITY OF ONION BULBS

Ph.D. Thesis
In
Agric. Sci. (Agricultural Engineering)

By

BABIKER ALI ABAKER ESHAG

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Gezira Univ., Sudan, 1999 M.Sc. Agric. in Agricultural Engineering, Fac. Agric., Khartoum Univ., Sudan, 2004

SUPERVISION COMMITTEE

Dr. MOHAMED HASHIM HATEM

Professor of Agricultural Engineering, Fac. Agric., Cairo University

Dr. SAID ABDALLA SHEHATA

Professor of Vegetable Crops, Fac. Agric., Cairo University

Dr. YOUSRY BAYOUMY ABDELHAY

Lecturer of Agricultural Engineering, Fac. Agric., Cairo University

DEDICATION
TO
SOUL OF MY FATHER
TO MY
MOTHER
CHILDREN
MY WIFE
BROTHERS
SISTERS
WITH MY GOOD WISHES, IN
RECOGNITION OF THEIR efforts

AKNOWLEGEMENT

Thanks and praise to the Merciful Allah, who gave me the patience to conduct this research.

I would like to express my deepest appreciation and sincere gratitude to my supervisor Dr. Mohamed Hashim Hatem, Professor of Agricultural Engineering, Faculty of Agriculture, Cairo University for his encouragement, advice and guidance through this work.

Also I wish to thank Dr. Said Abdalla Shehata,

Also I wish to thank Dr. Said Abdalla Shehata, Professor of Vegetable Crops, Faculty of Agriculture, Cairo University for his supervision, great help, valuable suggestion and unlimited help.

To Dr. Yousry Bayoumy, lecturer of Agrícultural Engíneering, Faculty of Agrículture, Caíro Uníversity for his supervision, faithful help and experienced guiding.

I'm deeply indebted to Dr. Karima Farouk who facilitated the experimental work to be conducted at laboratory of Improving Competitiveness of Some Vegetables for Exports Project (CIFVC), Faculty of Agriculture, Cairo University.

Thanks are also extended to the staff members of Department of Agricultural Engineering, Faculty of Agriculture, University of Cairo.

Special thanks are extended to my friends and colleagues.

Finally my thanks and appreciation to my family for their patience, moral support and encouragement during the study period

Name of Candidate: Babiker Ali Abaker Eshag Degree: Ph.D.

Title of Thesis: Effect of different storage conditions on the properties and quality of

onion bulbs

Supervisors: Dr. Mohamed Hashim Hatem

Dr. Said Abdalla Shehata

Dr. Yousry Bayoumy Abdelhay

Department: Agricultural Engineering Approval: 26/10/2014

ABSTRACT

Onion is one of the important commercial vegetable crops grown on a large scale in many countries. As the onion bulbs are to be stored for long period for use during off-season, a considerable loss occurs by way of deteriorating, sprouting, and moisture evaporation during storage. The objective of this study were to study the effect of storage conditions on the properties and the quality parameters of onion bulbs, in objective to keep quality, reduce losses, prolong shelf life, keep the price stable during the year. The properties of onion bulbs as affected by storage conditions are equatorial and polar diameter, compression strength, hardness, dry matter, total soluble solids and total carbohydrates. The quality parameters of the onion bulbs to be studied were weight loss, deterioration, sprouting and marketable percentage. The results indicated that, the average temperature in center of onion pile during the storage period ranged between 16.73 to 28.61 °C for the forced ventilation, where it was ranged between 18.18 to 31.03 °C for the natural ventilation, while in traditional storage system ranged between 19.52 to 32.93 °C. The highest mean of hardness value was recorded at natural ventilation (128.8 N) in the first season. Where the highest hardness value was observed at forced and natural ventilation in the second season (168.7 and 167.5 N, respectively), respectively. The highest dry matter percentage was recorded in natural ventilation 17.11% and the lowest dry matter percentage was recorded in the traditional storage system (16.52%), While, the dry matter percentage was insignificantly difference between treatments in the second season, The highest TSS percentage was recorded in traditional storage and natural ventilation (14.13 and 13.94%, respectively) in the first season, and 14.40% at forced ventilation in the second season. On the other hand, the highest carbohydrates percentage (7.48%) was recorded in natural ventilation in the first season. Whereas, the higher carbohydrates percentage was recorded in forced and natural ventilation (8.08 and 8.05% respectively) in the second season.

The bulbs stored under natural ventilation showed lowest moisture loss recorded in natural ventilation storage system (2.825 %) in the first season and (1.715%) in forced ventilation in the second season, and lowest percentage of deterioration (6.549%) was recorded in the first season, while forced ventilation recorded (0.813%) in the second season, whereas the lowest percentage of sprouting recorded in forced ventilation (1.470 and 0.3414%) in both season respectively. Also the highest marketable percentage was recorded in forced ventilation system 85.31% and the lowest percentage was recorded in traditional storage system (81.51%). The natural ventilation system obtained higher net return (922.27 LE/ton) in comparison with the net return in forced ventilation (466.50), whereas lowest net return of 461.30 LE/ton was obtained in traditional storage system. According to above results, natural ventilated with perforated pipes can be recommended for farmers.

Key words: storage systems, onion bulbs, temperature, relative humidity, forced ventilation, natural ventilation, traditional system, onion pile, deterioration, hardness, total soluble solids

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
L. Economic and Social Impacts of Onions	
2. World Production and Trade	
3. Pre and Post-harvest Treatments of Onion on	
Storage Potential	
a. Effect of Pre-harvest applications on storability of oni	ion.
b. Maturity at harvest	
c. Harvesting	
d. Transport and Problems in transportation	
e. Effect of post- harvest treatment on storability of onio	n
4. Storage Potential	
a. Direct Harvest Storage System	
b. Curing and Drying	
c. Sorting and Grading Before Storage	
1. Sorting	
2. Grading	
3. Problems in grading	
4. Packaging	
d. Onion Dormancy	
5. Temperature and Relative Humidity Regi	imes
Required for Onion Storage	
6. Effect of Storage Conditions on Storability of Oni	on
a. Bulk storage	
b. Air-conditioned stores	
c. Night-ventilated stores	
d. Storage at low temperature	
e. Storage at high-temperature	
7. Effect of storage bins and conditions on storabilit	-
onion	
a. Forced ventilation	
b. Natural ventilation	
c. Local traditional stores	
3. Shelf Life Determination	

9.	Physical, mechanical and chemical properties
cha	nnges during storage of onion
	a. Compression load and penetration resistance
	b. Total soluble solids and dry matter and total
	carbohydrates
	c. Deterioration
	d. Sprouting
	e. Moisture loss
	Effect of Treatments on Percent Marketable Bulbs
	ATERIALS AND METHODS
RE	SULTS AND DISCUSSION
	Storage Conditions
2.	Temperature and Relative Humidity Changes
	During the Storage Periods Under Different
	Conditions
	a. Temperature
	b. Relative humidity
3.	Onion Properties
	a. Equatorial and polar diameter changes during
	storage
	1. Equatorial diameter changes during storage
	2. Polar diameter changes during storage
	b. Compression load
	c. Hardness (N)
	d. Dry matter percentage
	e. Total soluble solids (TSS)
	f. Carbohydrates percentage
4. (Quality Parameters of Onion Bulbs During Storage
	a. Moisture losses percentage
	b. Deterioration percentage
	c. Sprouting percentage
	d. Marketable onion bulbs
5. (Costs of onion storage under different conditions
	MMARY
	FERENCES
	ABIC SUMMARY