

DEVELOPMENT OF APPLICATION MAPS FOR PVT PROPERTIES CORRELATIONS AS GUIDELINES FOR CORRELATIONS SELECTION

By

Ahmed Mohamed El-Sayed Selim

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

PETROLEUM ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

DEVELOPMENT OF APPLICATION MAPS FOR PVT PROPERTIES CORRELATIONS AS GUIDELINES FOR CORRELATIONS SELECTION

$\mathbf{B}\mathbf{y}$

Ahmed Mohamed El-Sayed Selim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

PETROLEUM ENGINEERING

Under the Supervision of

Prof. Dr. Ahmed H. El-Banbi
Professor of Petroleum Engineering
Mining, Petroleum and Metallurgy
Department
Faculty of Engineering, Cairo
University
Prof. Dr. El-Sayed Ahmed El-Tayeb
Professor of Petroleum Engineering
Mining, Petroleum and Metallurgy
Department
Faculty of Engineering, Cairo
University
University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2018

DEVELOPMENT OF APPLICATION MAPS FOR PVT PROPERTIES CORRELATIONS AS GUIDELINES FOR CORRELATIONS SELECTION

By Ahmed Mohamed El-Sayed Selim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

PETROLEUM ENGINEERING

PROF. DR. Ahmed H. El-Banbi,

Thesis Advisor

PROF. DR. El-Sayed Ahmed El-Tayeb,

Thesis Advisor

PROF. DR. Khalid Ahmed Abdelfatah,

Internal Examiner

DR. Mohamed Ahmed Samir,

Operations General Manager, Sahara Oil and Gas Company

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer: Ahmed Muhammad El-Sayed Selim

Date of Birth: 15/02/1988 **Nationality:** Egyptian

E-mail: ahmedselim33@gmail.com

 Phone:
 01005595022

 Registration Date:
 01/03/2011

 Awarding Date:
 //2018

Degree: Master of Science

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors:

Prof. Dr. Ahmed H. El-Banbi

Prof. Dr. El-Sayed Ahmed El-Tayeb

Examiners:

Dr. Mohamed Ahmed Samir (External Examiner)
Operations General Manager, Sahara Oil and Gas Company

Prof. Dr. Khalid Abdelfatah (Internal Examiner)

Prof. Dr. El-Sayed Ahmed El-Tayeb (Thesis Advisor)

Prof. Dr. Ahmed H. El-Banbi (Thesis Main Advisor)

Title of Thesis:

"Development of Application Maps for PVT Properties Correlations as Guidelines for Correlations Selection"

Key Words:

PVT – Black Oil Correlations – Correlations Selection – PVT Expert System – Application Maps

Summary:

Reservoir fluid properties (PVT properties) form the basis of many petroleum engineering calculations. The preferred way to determine the PVT data is by laboratory experiments on reservoir fluid representative samples. However, it is sometimes hard to obtain such samples and the engineer is left to estimate PVT properties from empirical correlations. The main target of the present research is to build Application Maps system that use groups of correlations to calculate input data that are used to evaluate correlations. Hence, application maps evaluate groups of correlations with complicated errors instead of single correlations with simple errors. The overall error that is resulted from using the Application Maps is 16.75%.

ACKNOWLEDGEMENTS

It is my pleasure to acknowledge and express my gratitude and appreciation to:

Prof. Dr. El-Sayed A. El-Tayeb for his important notes to improve the way this thesis discusses the main problem.

Prof. Dr. Ahmed H. El-Banbi the supervisor of this research for his continuous help, guidance, orientation, enthusiasm, support and for his different ideas that led to the completion of this work. Actually I learned and I'm still learning from him and I am proud to be one of his students.

Prof. Dr. Khaled Abdelfatah for his great role in the examining committee.

Dr. Mohamed A. Samir for his contribution in the examining committee.

Eng. Ahmed Al-Maraghy for his role in programming the correlations calculator. Without his technical support, this work would take years to be done. It is he who accelerated the way I deal with correlations and large amount of data.

Eng. Ahmed Tawfik for encouraging me all the way and enthusing me to finish this work.

Eng. Walaa Badawy for her continuous help and support. She taught me how to get the maximum benefit from using Microsoft Excel and how to build programs using Visual Basic for Applications (VBA).

Engs. Mahmoud El-Sheikh, Mahmoud Koreish for their support.

Engs. Ayman Al-Bendary, Salah Hassan, Khaled Eltabey for their support.

Engs. Abdallah Sallam, Ahmed Al-Maghraby, Ahmed Khalil, and Ismael Elhalawy for their support through the past 5 years. You were the best colleagues I have ever met.

And finally I want to thank all my colleagues in Gulf of Suez Petroleum Company (GUPCO) for their different support along this work.

DEDICATION

I would like to dedicate this thesis to my mother, my wife and my sister.

Only with your support and your true love and encouragement, I finished this work. Beside you, I can pass and do anything in this life.

Table of Contents

ACKNOWLEDGEMENTS	i
DEDICATION	ii
LIST OF TABLES	vi
LIST OF FIGURES	X
NOMENCLATURE	
Abstract	
Chapter (1) Introduction	
Chapter (2) Literature Review	
2.1. Background of Black Oil Correlations	
2.1.1.Bubble-Point Pressure Correlations	
2.1.2.Solution Gas-Oil Ratio Correlations	
2.1.3.Oil Formation Volume Factor at and below Bubble-Point Pressure	
2.1.4.Undersaturated Oil Formation Volume Factor	
2.1.5.Undersaturated Isothermal Oil Compressibility	10
2.1.6.Isothermal Oil Compressibility at and below Bubble-Point Pressure	
2.1.7.Oil Density above the Bubble-Point Pressure	12
2.1.8.Oil Density at and below Bubble-Point Pressure	12
2.1.9.Oil Viscosity at and below Bubble-Point Pressure	13
2.1.10. Dead Oil Viscosity	14
2.1.11. Undersaturated Oil Viscosity	15
2.1.12. Free Gas Specific Gravity	16
2.1.13. Stock-Tank Gas-Oil Ratio	17
2.3. Comparison Studies	17
2.2.1.Bubble-Point Pressure Correlations	17
2.2.2.The Solution Gas-Oil Ratio	18
2.2.3.Oil Formation Volume Factor at and below the Bubble-point	18
2.2.4.Undersaturated Oil Formation Volume Factor	19
2.2.5.Undersaturated Isothermal Oil Compressibility	20
2.2.6.Oil Density at and below Bubble-Point Pressure	
2.2.7.Oil Viscosity at and below Bubble-Point Pressure:	

2.2.8.Oil Viscosity at and below Bubble-Point Pressure	21
2.2.9.Oil Viscosity at and below Bubble-Point Pressure	22
Chapter (3) Statement of the Problem and Objectives	23
3.1. Statement of the Problem	23
3.2. Objectives	24
Chapter (4) Development of the PVT Properties Database	25
4.1. Introduction	25
4.2. Samples Gathering Process	25
4.3. Data Processing	26
4.3.1.Collecting Data in Standard Forms	27
4.3.2.Revision of Collected Data	31
4.4. Database Statistics	33
4.5. Data Clustering	33
4.6. Samples Intermediate Sheet	35
Chapter (5) Development of the Correlations Calculator	36
5.1. Implemented Correlations	36
5.2. Calculation Approaches	37
5.3.1.Pass-1 Calculation Approach	38
5.3.2.Pass-2 Calculations Approach	40
5.4. Errors Calculations	42
5.4.1.Absolute Average Error	42
5.4.2.Relative Average Error	42
5.4.3.Strength Factor	42
Chapter (6) Development of Application Maps System	43
6.1. Methodology	43
6.2.1.PVT Raw Data	44
6.2.2.Data Clustering	44
6.2.3.Involved Correlations	44
6.2.4.Calculation Trends	44
6.2.5.Errors Calculations	45
6.2.6 Application Mans Approach	45

6.3. Level (1) – PVT Data from Reports	46
6.4. Level (2) – Pass-1 Calculation Approach	46
6.5. Level (3) – Pass-2 Calculation Approach	46
6.5.1.Correlations Grouping	46
6.5.2.Results of Pass-2 Approach	49
6.6. Level (4) – Application Maps Approach	52
6.6.1.Families' Application Area	52
6.6.2.Best Application Area Determination	53
6.6.3.Families Sub Clusters	54
6.6.4. Application Maps Program	54
Chapter (7) Validation of the Application Maps System	57
7.1. Validation Data	57
7.2. The Analysis of the Validation Results	58
7.3.1.Bubble-Point Pressure	58
7.3.2.Oil Density at Bubble-Point Pressure	59
7.3.3.Oil Formation Volume Factor at Bubble-Point Pressure	60
7.3.4.Saturated Gas-Oil Ratio	61
7.3.5.Saturated Oil Density	61
7.3.6.Saturated Oil Formation Volume Factor	62
7.3.7.Undersaturated Oil Formation Volume Factor	63
7.3.8.Undersaturated Isothermal Oil Compressibility	63
7.3.9.Undersaturated Oil Density	64
7.4. General Results	65
Chapter (8) Conclusions and Recommendations	66
8.1. Conclusions	66
8.2. Recommendations	67
References	68
Appendix (A) PVT Correlations	72
Appendix (B) Correlations Comparison Studies	
Appendix (C) Detailed Data and Results	
Appendix (D) Detailed Results of the Application Maps System	201

LIST OF TABLES

Table 4-1: Statistics of the Constructed Database	. 33
Table 4-2: Criteria of Dividing Samples Data into Clusters	. 34
Table 4-3: Clusters ranges	. 34
Table 6-1: Correlations Families	. 48
Table 6-2: Absolute Average Errors of Families for All Points	. 49
Table 6-3: Limitations of the 12 Correlations Families	. 50
Table 6-4: Absolute Average Errors of Families inside their Limitations	. 51
Table 6-5: Comparison between Best Families when Applied for All Points and inside their	
Limitations	
Table 7-1: Summary of Validation Data Statistics	. 57
Table 7-2: Validation Samples Distribution over Clusters	. 58
Table 7-3: Validation Results for Bubble-point pressure	. 59
Table 7-4: Validation Results for Oil Density at Bubble-point pressure	. 60
Table 7-5: Validation Results for Oil Formation Volume Factor at Bubble-point pressure	. 60
Table 7-6: Validation Results for Saturated Gas-Oil Ratio	. 61
Table 7-7: Validation Results for Saturated Oil Density	. 62
Table 7-8: Validation Results for Saturated Oil Formation Volume Factor	. 62
Table 7-9: Validation Results for Undersaturated Oil Formation volume Factor	. 63
Table 7-10: Validation Results for Undersaturated Isothermal Oil Compressibility	. 64
Table 7-11: Validation Results for undersaturated Oil Density	. 64
Table 7-12: Validation Results over All PVT Preperties	. 65
Table B-1: Comparison between the Reported AARE and Studies Reported AARE of Bubble-	-
Point Pressure Correlations	127
Table B-2: The Comparison Between The Reported AARE and The Studies Reported AARE	of
The Solution Gas-Oil Ratio Correlations	129
Table B-3: The Comparison Between The Reported AARE and The Studies Reported AARE	of
The Oil Formation Volume Factor Correlations at and below Bubble-point Pressure	132
Table B-4: The Comparison Between The Reported AARE and The Studies Reported AARE	of
The Undersaturated Oil Formation Volume Factor Correlations	133
Table B-5: The Comparison Between The Reported AARE and The Studies Reported AARE	
The Undersaturated Oil Compressibility Correlations	135
Table B-6: The Comparison Between The Reported AARE and The Studies Reported AARE	of
The Oil Density at and Below Bubble-point Pressure Correlations	137
Table B-7: The Comparison Between The Reported AARE and The Studies Reported AARE	
The Oil Viscosity at and below Bubble-point Pressure Correlations	139
Table B-8: The Comparison Between The Reported AARE and The Studies Reported AARE	of
The Dead Oil Viscosity Correlations	140

Table B-9: The Comparison Between The Reported AARE and The Studies Reported AAF	RE of
The Undersaturated Oil Viscosity Correlations	
Table C-1: Data of Cluster No.1	
Table C-2: Data of Cluster No.3	144
Table C-3: Data of Cluster No.5	145
Table C-4: Data of Cluster No.7	146
Table C-5: Data of Cluster No.9	147
Table C-6: Data of Cluster No.10	147
Table C-7: Data of Cluster No.11	148
Table C-8: Data of Cluster No.13	148
Table C-9: Data of Cluster No. 14	153
Table C-10: Data of Cluster No.15	155
Table C-11: Data of Cluster No.16	159
Table C-12: Bubblepoint Pressure Calculations	160
Table C-13: Results of Pass-1 Approach for Gas-Oil Ratio at Bubblepoint Pressure Calcula	tions
	161
Table C-14: Results of Pass-1 Approach for Oil Formation Volume Factor at Bubblepoint	
Pressure Calculations	161
Table C-15: Results of Pass-1 Approach for Oil Compressibility at Bubblepoint Pressure	
Calculations	162
Table C-16: Results of Pass-1 Approach for Oil Density at Bubblepoint Pressure Calculation	ns163
Table C-17: Results of Pass-1 Approach for Oil Viscosity at Bubblepoint Pressure Calculate	ions
Table C-18: Results of Pass-1 Approach for Saturated Gas-Oil Ratio Calculations	164
Table C-19: Results of Pass-1 Approach for Saturated Oil Formation Volume Factor	
Calculations	165
Table C-20: Results of Pass-1 Approach for Saturated Oil Compressibility Calculations	
Table C-21: Results of Pass-1 Approach for Saturated Oil Density Calculations	166
Table C-22: Results of Pass-1 Approach for Saturated Oil Viscosity Calculations	167
Table C-23: Results of Pass-1 Approach for UnderSaturated Formation Volume Factor	
Calculations	168
Table C-24: Results of Pass-1 Approach for UnderSaturated Oil Compressibility Calculation	ns168
Table C-25: Results of Pass-1 Approach for UnderSaturated Oil Density Calculations	169
Table C-26: Results of Pass-1 Approach for UnderSaturated Oil Viscosity Calculations	170
Table C-27: Results of Pass-1 Approach for Bubblepoint Pressure Calculations	171
Table C-28: Results of Pass-1 Approach Gas-Oil Ratio at Bubblepoint Pressure Calculation	ns 171
Table C-29: Results of Pass-1 Approach Oil Formation Volume Factor at Bubblepoint Pres	
Calculations	172
Table C-30: Results of Pass-1 Approach Oil Compressibility at Bubble-Point Pressure	
Calculations	173

Table C-31: Results of Pass-1 Approach Oil Density at Bubblepoint Pressure Calculations	173
Table C-32: Results of Pass-1 Approach Oil Viscosity at Bubblepoint Pressure Calculations	174
Table C-33: Results of Pass-1 Approach Saturated Gas-Oil Density Calculations	175
Table C-34: Results of Pass-1 Approach Saturated Oil Formation Volume Factor Calculation	S
	175
Table C-35: Results of Pass-1 Approach Saturated Oil Compressibility Calculations	
Table C-36: Results of Pass-1 Approach Saturated Oil Density Calculations	177
Table C-37: Results of Pass-1 Approach Saturated Oil Viscosity Calculations	177
Table C-38: Results of Pass-1 Approach Undersaturated Oil formation Volume Factor	
Calculations	178
Table C-39: Pass1 Results of Pass-1 Approach Undersaturated Oil Compressibility Calculation	ons
	179
Table C-40: Results of Pass-1 Approach Undersaturated Oil Density Calculations	179
Table C-41: Results of Pass-1 Approach Undersaturated Oil Viscosity Calculations	180
Table C-42: Results of Pass-2 Approach Bubblepoint Pressure Calculations	181
Table C-43: Results of Pass-2 Approach Gas-Oil Ratio at Bubblepoint Pressure Calculations	182
Table C-44: Results of Pass-2 Approach Oil Formation Volume Factor at Bubblepoint Pressu	ıre
Calculations	182
Table C-45: Results of Pass-2 Approach Oil Compressibility at Bubblepoint Pressure	
Calculations	183
Table C-46: Results of Pass-2 Approach Oil Density at Bubblepoint Pressure Calculations	184
Table C-47: Results of Pass-2 Approach Oil Viscosity at Bubblepoint Pressure Calculations	184
Table C-48: Results of Pass-2 Approach Saturated Gas-Oil Ratio Calculations	185
Table C-49: Results of Pass-2 Approach Saturated Oil Formation Volume Factor Calculation	S
	186
Table C-50: Results of Pass-2 Approach Saturated Oil Compressibility Calculations	186
Table C-51: Results of Pass-2 Approach Saturated Oil Density Calculations	187
Table C-52: Results of Pass-2 Approach Saturated Oil Viscosity Calculations	187
Table C-53: Results of Pass-2 Approach Undersaturated Oil Formation Volume Factor	
Calculations	188
Table C-54: Results of Pass-2 Approach Undersaturated Oil Compressibility Calculations	189
Table C-55: Results of Pass-2 Approach Undersaturated Oil Density Calculations	189
Table C-56: Results of Pass-2 Approach Undersaturated Oil Viscosity Calculations	190
Table C-57: Results of Pass-2 Approach Bubblepoint Pressure Calculations	191
Table C-58: Results of Pass-2 Approach Gas-Oil Ratio at Bubblepoint Pressure Calculations	191
Table C-59: Results of Pass-2 Approach Oil Formation Volume Factor at Bubblepoint Pressu	ıre
Calculations	192
Table C-60: Results of Pass-2 Approach Bubblepoint Pressure Calculations	193
TableC-61: Results of Pass-2 Approach Oil Density at Bubblepoint Pressure Calculations	193
Table C-62: Results of Pass-2 Approach Oil Viscosity at Bubblepoint Pressure Calculations	194

Table C-63: Results of Pass-2 Approach Saturated Gas-Oil Ratio Calculations	195
Table C-64: Results of Pass-2 Approach Saturated Oil Formation Volume Factor Calculati	ons
	195
Table C-65: Results of Pass-2 Approach Saturated Oil Compressibility Calculations	196
Table C-66: Results of Pass-2 Approach Saturated Oil Density Calculations	196
Table C-67: Results of Pass-2 Approach Saturated Oil Viscosity Calculations	197
Table C-68: Results of Pass-2 Approach Undersaturated Oil Formation Volume Factor	
Calculations	198
Table C-69: Results of Pass-2 Approach Undersaturated Oil Compressibility Calculations.	198
Table C-70: Results of Pass-2 Approach Undersaturated Oil Density Calculations	199
Table C-71: Results of Pass-2 Approach Undersaturated Oil Viscosity Calculations	200
Table D-1: Bubblepoint Pressure Results	201
TableD-2: Solution Gas-Oil Ratio at Bubblepoint Pressure	202
TableD-3: Oil Formation Volume Factor at Bubblepoint Pressure	202
Table D-4: Oil Density at Bubblepoint Pressure	202
Table D-5: Oil Viscosity at Bubblepoint Pressure	202
Table D-6: Solution Gas-Oil Ratio	202
Table D-7: Saturated Oil Formation Volume Factor	202
Table D-8: Saturated Oil Density	202
Table D-9: Saturated Oil Viscosity	202
Table D-10: Undersaturated Oil Formation Volume Factor	202
Table D-11: Undersaturated Oil Comressibility	202
Table D-12: Undersaturated Oil Density	202
Table D-13: Undersaturated Oil Viscosity	202

LIST OF FIGURES

Figure 4-1: Raw Data Reports with Serial Number	26
Figure 4-2: Constant Composition Expansion Typical	27
Figure 4-3: Constant Volume Depletion Typical Form	28
Figure 4-4: Deferential Liberation Typical From	28
Figure 4-5: Multi-Stage Separation Test Typical Form	29
Figure 4-6: Viscosity Data and Flash Comparison Typical Forms	29
Figure 4-7: Sample Summary Typical From	30
Figure 4-8: Reservoir Fluid Composition Typical Form	31
Figure 4-9: PVT Access Database	32
Figure 4-10: The Stracture of the Samples Intermediate Sheet	35
Figure 5-1: Pass-1 Calculation Flowchart Part No. 1	38
Figure 5-2: Pass-1 Calculation Flowchart Part No. 2	39
Figure 5-3: Pass-2 Calculation Flowchart Part No. 1	40
Figure 5-4: Pass-2 Calculation Flowchart Part No. 2	41
Figure 6-1: Determining the Best Application Area of Families	53
Figure 6-2: Continue Determining the Best Application Area of Families	54
Figure 6-3: Application Maps Program Interface	55
Figure 6-4: An Example of Using the Application Maps Program	56

NOMENCLATURE

Bo = Oil Formation Volume Factor

Bg = Gas Formation Volume Factor

bbl = Barrel

cm = Centimeter

cp = Centipoise

Co = Isothermal Compressibility of Oil

Eq. = Equation

Fig. = Figure

FT = Feet

°F = Degree Fahrenheit

 $G_{Sp} = Gas Specific Gravity$

in = Inch

M = Thousand

No. = Number

P = Pressure

Pb = Bubble-Point Pressure

Psi = Pound per Square Inch

Psia = Pound per Square Inch Absolute

Psig = Pound per Square Inch Gauge

°R = Degree Rankine

 $R_s = Gas$ in Solution

 $T_r = Reservoir Temperature$

V = Volume

 γ = Specific Gravity

 $Y_g = Gas Specific Gravity$

Yo = Oil Specific Gravity

 $\mu = Viscosity$

 $\mu_g = Gas \ Viscosity$

μL = Liquid Viscosity

 ρ = Density

 $\rho_g = Gas Density$

 $\rho_L = Liquid Density$

% = Percentage

° = Degree

Abbreviations

AAE = Absolute Average Error

API = Oil Gravity in °API

Avg. = Average

BHT = Bottom Hole Temperature

BHP = Bottom Hole Pressure

GLR = Gas Liquid Ratio

GOR = Gas-Oil Ratio