

Genetic polymorphism study of *Mx* gene resistant to avian influenza virus of the chicken strains in Egypt

A Thesis Submitted for Ph.D. Degree in Zoology

By Fatma Mohamed Sayed Ahmed

B.Sc. Zoology, M.Sc. Genetics
Assistant Researcher
Cell Biology Department, National Research Center

Under supervision of

Prof. Dr. Nagwa Hassan Ali

Professor of Cytogenetics Zoology Department Faculty of Science Ain Shams University

Prof. Dr. Mohamed Saber Hassanane

Professor of Animal Genetics Cell Biology Department National Research Center

Department of Zoology Faculty of Science Ain Shams University

APPOROVAL SHEET

Title of the Ph.D. Thesis

Genetic polymorphism study of *Mx* gene resistant to avian influenza virus of the chicken strains in Egypt

A Thesis Submitted for Ph.D. Degree in Zoology

By Fatma Mohamed Sayed Ahmed

B.Sc. Zoology, M.Sc. Genetics
Assistant Researcher
Cell Biology Department, National Research Center

Supervision Committee:

Approved

Prof. Dr. Nagwa Hassan Ali

Professor of Cytogenetics Zoology Department

Faculty of Science Ain Shams University

Prof. Dr. Mohamed Saber Hassanane

Professor of Animal Genetics Cell Biology

Department National Research Center

Department of Zoology Faculty of Science Ain Shams University

2017

بِسْ _____ِاللَّهِ ٱلرَّحْمَٰزِ ٱلرَّحِيَـِ

﴿ فَتَعَلَى ٱللَّهُ ٱلْمَلِكُ ٱلْحَقِّ وَلَا تَعَجَلَ بِٱلْقُرْءَانِ مِن قَبْلِأَن يُقْضَى إِلَيْكَ وَحْيُهُ وَقُل رَّبِ زِدْنِي عِلْمَا ﴿ طه: ١١٤

صدق الله العظيم،،،

I declare that, the work contained in this thesis is the result of my own the investigations. It has not been previously submitted for any degree at this or any other university.

Fatma Mohamed Sayed Ahmed

DEDICATION

THE MOST IMPORTANT PEOPLE IN MY LIFE, MY PARENTS, HUSBAND AND MY SON AHMED. THANK YOU FOR YOUR ENDLESS LOVE AND SUPPORT.

Acknowledgement

In the name of Allah, the most gracious, the most merciful. May the peace, blessings and mercy of Allah be upon our prophet Muhammad, the final of messengers, his family and companions in entirety and those who follow him until the Day of Judgment.

I would like to acknowledge and thank the following individuals who have helped me to perform the work presented in this thesis:

- **Prof. Dr. Nagwa Hassan Ali**, Professor of Cytogenetics, Zoology department, Faculty of science, Ain Shams University; for her continuous help and for giving me the honor of working under her supervision.
- **Prof. Dr. Mohamed Saber Hassanane**, Professor of Animal Genetics, Cell Biology Department, National Research Center; for his help and generous supervision. It's been very pleasant to work with him.
- *Prof. Dr. Amal Ahmed Hassan*, Professor of Molecular Genetics, Cell Biology Department, National Research Center; for her encouragement. I was lucky to work with her.
- *Prof. Dr. Khaled Roushdy* and *Dr. Esteftah El-Komy* for their help, time and encouragement.

All my real friends for their encouragement to exceed all barriers in my way and during the hard times.

ABSTRACT

Name: Fatma Mohamed Sayed Ahmed

Ph.D Thesis

Department of Zoology, Faculty of Science, Ain Shams university, 2017

Thesis Title: Genetic polymorphism study of Mx gene resistant to avian influenza virus of the chicken strains in Egypt

ABSTRACT

The present study was performed in order to identify the genetic polymorphism of the chicken Mx gene in two breeds (Dandarawy and Fayoumi) and seven strains (El-Salam, Golden Montazah, Dokki-4, White egg commercial, red egg commercial, Gemmizah and Baladi) of Egyptian chickens. The study was performed on 246 chickens using PCR-RFLP methodology. DNA were extracted from blood samples collected from the birds understudy, Polymerase Chain Reaction was performed using specific primer for the Mx gene region of interest. In order to identify the alleles and genotypes, the PCR products were then cut with specific restriction enzyme and the product was run on agarose gel electrophoresis. The results showed that the allele A is present in all the breeds and strains studied, and the all Baladi strain birds were carrying the genotype AA

means that this strain is highly resistant to the viral infection. The obtained results were confirmed by DNA sequencing; sequences were compared and deposited successfully at the International gene bank. An ineffective addition of two bases TT in the intronic region was observed in some birds. In conclusion, applying the PCR-RFLP technique in the breeding programs to select chickens that carry the A allele with high frequencies could help in improving poultry breeding in Egypt by producing infectious disease-resistant chickens. It will also save the expenses paid in purchasing vaccines, drugs used for treating the infected birds. Moreover it will protect the humans near the infected birds from the infection transfer to them.

Keywords: *Mx* gene, Avian flu, Avian flu viruses, genetic polymorphism, orthomyxo viruses.

Table of Contents

Acknowl	eagment		ı
Abstract			iii
Table of	Contents		٧
List of Ta	ables		vii
List of Fi	gures		viii
List of Al	bbreviation		ix
I		Introduction and aim of the work	1
II		Review of literature	4
2	2.1	Avian flu	4
	2.1.1.	Definition, history and outbreaks	4
	2.1.2.	Economic loss	7
	2.1.3.	Avian influenza causing virus	9
	2.1.4.	Ways of chicken infection	12
	2.1.5.	Symptoms	17
	2.1.6.	Virus transmission to human and other	
		mammals	18
	2.1.7.	Treatment and eradication of infected	
		birds	19
2	2.2.	Egyptian chickens	20
	2.2.1	Breeds and strains	20
	2.2.2.	History of avian influenza epidemic,	
		economic losses, efforts from the Egyptian	
		government to prevent the disease	
		spreading	25
2	2.3.	Chicken genome	28
	2.3.1.	Avian <i>Mx</i> gene	29
	2.3.2.	Structure of Mx proteins	31
	2.3.3.	Mode of action	33
	2.3.4.	Chicken Mx gene, polymorphism	36
	2.3.5.	Breeding resistant chicken against Avian	
		Influenza	39
III		Materials and Methods	41

IV	Results	51
V	Discussion	70
VI	Summary and Conclusion	81
VII	References	86
VIII	Arabic summary	

LIST OF TABLES

Table 1:	Information	regardi	ng collecte	ed blood	
	samples in th	e present	study		41
Table 2:	Genotype an	d allele f	requencies o	f A and G	
	alleles in the	different	studied chick	ens	54
Table 3:	Summary of	of the	nucleotides	sequence	
	variations in	the five p	atterns	- 	59

LIST OF FIGURES

Fig. 1:	Representatives of the PCR amplified segment	
	of the <i>Mx</i> gene in Egyptian Chicken	51
Fig. 2:	Restriction cut of the PCR products with Hpy81	
C	enzyme	52
Fig. 3:	Alignment of the five detected sequence	
	patterns from the different Egyptian chicken	
	samples. R: means a heterozygous sample that	
	contains the two alleles A and G at the	
	nucleotide position	53
Fig.4:	Representatives of Sequencing data from of: 1-	
C	AG, 2- GG and 3- AA genotypes	53
Fig. 5:	• • • • • • • • • • • • • • • • • • • •	
C	AG, 2- GG and 3- AA genotypes	57
Fig. 6:	Alignment of the five detected sequence	
C	patterns from the different Egyptian chicken	
	samples. R: means a heterozygous sample that	
	contains the two alleles A and G at the	
	nucleotide position	60
Fig. 7:	Exonic and intronic regions for the chicken Mx	
J	gene	61

LIST OF ABBREVIATIONS

aa Amino acid

AI Avian influenza

Asn Asparagine

bp Base pair

cDNA Complimentary DNA

EDTA Ethylene diamine tetraacetic acid

GAS Genotype Assisted Selection

GED GTpases effector domain

H Hemagglutinin

HCL Hydrochloric acid

HPAI Highly pathogenic avian influenza

IFN Interferon

Kb Kilo base

L Liter

LBMS Live Bird Markets

LPAI Low pathogenic avian influenza

MAS Marker Assisted Selection

MD Middle domain

mRNA Messenger RNA

N Neuraminidase

Na2EDTA DiSodium Ethylene diamine tetra acetic acid

NDV New Castle Disease Virus

O.D Optical Density

PBS Phosphate-Buffered Saline

PCR Polymerase chain reaction

PCR- Polymerase Chain Reaction- Restriction Fragment

RFLP Length Polymorphism

rpm Revolutions per minute

SAS Self-assembly sequences

Ser Serine

SNPs Single nucleotide changes

UTR Untranslated region

UV Ultraviolet

VSV Vesicular stomatitis virus