ROLE OF ON-LINE HAEMODIAFILTRATION IN BONE DISEASE IN CHILDREN WITH CHRONIC KIDNEY DISEASE

Thesis

Submitted for partial fulfillment of the Master Degree in Pediatrics
By

Samah Shaban Nour El-deen Eissa (M.B.B.Ch.)

Supervised by

Prof. Dr. Fatina Ibrahim Fadel

Professor of Pediatrics
Faculty of Medicine- Cairo University

Prof. Dr. Hafez Mahmoud Bazaraa

Assist. Professor of Pediatrics Faculty of Medicine- Cairo University

Dr. Dina Hisham Ahmed Soliman

Lecturer of Chemical Pathology Faculty of Medicine- Cairo University

Faculty of Medicine Cairo University

2012 Acknowledgment

First and foremost thanks to "Allah" the most merciful to whom I relate any success in achieving any work in my life.

I would like to express my sincerest gratitude and appreciation to Professor Dr. **Fatina Ibrahim Fadel**, Professor of Pediatrics, Cairo University, for her unlimited support, and continuous guidance.

I am greatly indebted to assistant Professor Dr. Hafez Mahmoud Bazaraa, assistant professor of Pediatrics, Cairo University. His honest assistance made the achievement of this work possible.

Many thanks to Dr . Dina hisham for her help and support.

I would like to express my deep appreciation and warm thanks to the **nursing team** of Cairo University Center for Pediatric Nephrology and Transplantation.

I am also deeply grateful to the **young patients and** their parents who allowed this work to be done.

My lovely thanks and gratitude go to my parents and my sisters who were always behind any success in my life.

ABSTRACT

Background: on-line hemodiafiltration (HDF) is a technique of renal replacement therapy which combines diffusion with convection and uses ultrapure dialysate as a replacement fluid, this technique allowing removal of middle molecular weight uremic toxins. **Aim:** To compare the

effect of on-line hemodiafiltration versus conventional HD regarding the control of renal osteodystrophy.

Methods: This study included 16 pediatric patients with age range 4-16 with ESRD on maintenance hemodialysis, they were converted to on-line HDF for three months. Clinical, laboratory and radiological manifestations of ROD were compared for both modalities. **Results:** The mean level of serum **P** decreased from 4.9mg/dl to 4.2mg/dl (p=.04), the mean level of **PTH** decreased from 749pg/ml to 404pg/ml (p=0.001), with significant improvement in **bony pains** (p=.029) and no change in the **X-ray** findings.

Conclusion: On-line HDF improves the control of ROD in children with ESRD.

Key words:

Chronic kidney disease, Hemodialysis, On –line hemodiafiltration, PTH, renal osteodystrophy, Ultrapure dialysate

List of Contents

	Page
List of abbreviations	I
List of tables	III
List of Figures	V

Introduction and aim of the work	1
Review of literature	
Chapter 1 : Chronic kidney disease	4
Chapter 2: Renal osteodystrophy	21
Chapter 3: Hemodialysis	52
Chapter 4: On-line hemodiafiltration	68
Patients and method	75
Results	81
Discussion	94
Conclusion	99
Recommendation	100
Summary	102
References	104
Arabic summary	
Appendix	

List of Abbreviations

ABD	Adynamic bone disease
ALP	Alkaline phosphatase
AVF	Arteriovenous fistula
AVG	Arteriovenous graft
BALP	Bone-specific alkaline phosphatase
BMD	Bone mineral density
CaR	Calcium sensing receptor

CKD Chronic kidney disease

CKD-MBD Chronic kidney disease- mineral bone disease

CRF Chronic renal failure

DEXA Dual-energyX-ray absorptiometry

EPO Erythropoietin

ESRD End stage renal disease

FGF-23 Fibroblast growth factor -23

GRF Glomerular filtration rate

HD Hemodialysis

HDF Hemodiafiltration

HF Hemofiltration

ICTP Type 1 collagen cross-linked telopeptide

LVH Left ventricular hypertrophy

NKF/DOQI National Kidney Foundation Disease Outcome

Quality Initiative

PICP Procollagen type I carboxyl terminal

propeptide

PTFE Polytetrafluoroethylene

PTH Parathyroid hormone

PUJ Pelvi-ureteric junction obstruction

PUV Pelvi-urethral valve

ROD Renal osteodystrophy

SCD Sudden cardiac death

TMR Transmembrane receptor

UKM Urea kinetic modeling

UTI Urinary tract obstruction

VDR Vitamin D receptor

VUR Vesico-ureteric reflux

List of Abbreviations

ABD Adynamic bone disease

ALP Alkaline phosphatase

AVF Arteriovenous fistula

AVG Arteriovenous graft

BAP Bone-specific alkaline phosphatase

BMD Bone mineral density

CaR Calcium sensing receptor

CKD Chronic kidney disease

CKD-MBD Chronic kidney disease- mineral bone disease

CRF Chronic renal failure

DEXA Dual-energyX-ray absorptiometry

EPO Erythropoietin

ESRD End stage renal disease

FGF-23 Fibroblast growth factor -23

GRF Glomerular filtration rate

HD Hemodialysis

HDF Hemodiafiltration

HF Hemofiltration

ICTP Type 1 collagen cross-linked telopeptide

LVH Left ventricular hypertrophy

NKF/DOQI National Kidney Foundation Disease Outcome

Quality Initiative

PICP Procollagen type I carboxyl terminal

propeptide

PTFE Polytetrafluoroethylene

PTH Parathyroid hormone

PUJ Pelvi-ureteric junction obstruction

PUV Pelvi-urethral valve

ROD Renal osteodystrophy

SCD Sudden cardiac death

TMR Transmembrane receptor

UKM Urea kinetic modeling

UTI Urinary tract obstruction

VDR Vitamin D receptor

VUR Vesico-ureteric reflux

List of Tables

		Page	
Table (1):	Criteria for the Definition of CKD	4	
Table (2):	Classifications of stages of chronic kidney		
	disease		
Table (3):	Disorders that increase the risk of CKD		
Table (4):	The etiology of CKD in children (adapted from a		
	single center study).		
Table (5):	Possible factors involved in the pathogenesis of	10	
	uremic bleeding.		
Table (6):	Estimation of GFR in Children Using Serum	14	
	Creatinine and Height.		
Table (7):	The signs and symptoms of ROD in children	30	
Table (8):	Serum Markers of Bone Turnover	36	
Table (9):	Conditions that may argue for relatively early	53	
	initiation of dialysis		
Table (10):	Strategy to help prevent hypotension during	62	
	hemodialysis		
Table (44)	Condition of the atually amount	0.4	
Table (11):	Sex distribution of the study group	81	
Table (12):	Age and duration of dialysis of patients		
Table (13):	Anthropometric measurements of the study	82	
	group		

		Page	
Table (14):	Original renal disease in the study group		
Table (15):	Co-morbid conditions in the study group		
Table (16):	Blood pressure values on conventional and on- line HDF	85	
Table (17):	The frequency of patients receiving antihypertensive drugs	86	
Table (18):	Hemoglobin status and Erythropoietin dose of the study group	87	
Table (19):	Comparison between conventional HD and on- line HDF regarding Kt/V and routine laboratory investigations	88	
Table (20):	Drugs for renal osteodystrophy in the study group	89	
Table (21):	Bony pains of renal osteodystophy in the study group	91	
Table (22):	X – ray findings of renal osteodystrophy in the study group	93	

List of Figure

	Page
Figure (1): Sex distribution among study group	81
Figure (2): Weight and height in the study group	83
Figure (3): Original renal disease in the study group	84
Figure (4): Blood pressure values on conventional hemodialysis and On-line hemodiafiltration.	86
Figure (5): comparison between conventional hemodialysis and on-line hemodiafiltration regarding hematocrite	88
Figure (6): comparison between conventional hemodialysis and on-line Hemodiafiltration regarding calcium, phosphorus and creatinine	90
Figure (7): Comparison between conventional hemodialysis and on-line Hemodiafiltration regarding parathyroid hormone	90
Figure (8): Bony pains of renal osteodystrophy on Conventional hemodialysis and on-line hemodiafiltration	91
Figure (9): Bone deformity in the study group.	93

INTRODUCTION

Chronic kidney disease (CKD) is a term used to describe patients with kidney damage or decreased level of renal function for three months or more, irrespective of the underlying condition .It is defined as the presence of kidney damage or GFR below 60ml/min/1.73m2 (*Hogg et al.*, 2003).

Disordered regulation of mineral metabolism occurs early in the course of CKD and results in alterations in bone modeling, remodeling and growth (*Drueke et al.*, 2006). Renal osteodystrophy is a term applied to the changes in mineral metabolism that occur uniformly in CKD (*Martin et al.*, 2004).

Renal osteodystrophy has been classified, primarily by alterations in bone turnover to:

- 1- High bone turn-over: excessive levels of circulating PTH result in increased bone turn-over and osteitis fibrosa cystica is the advanced lesion of secondary hyperparathyroidism (*Mucsi et al.*, 2005).
- 2- Low-turn-over bone disease.

In patients with ESRD on HD, solute removal capacity of uremic toxins is enhanced by on-line HDF. In this technique, a certain amount of freshly prepared ultrapure dialysate is taken from the dialysate inlet line and processed with multiple filtration steps before being used as a replacement fluid (*Ronco et al.*, 2006).

HDF expands the spectrum of uremic toxin removal from small-sized solutes, as in conventional HD, to middle-sized and large molecular weight solutes by combining convective clearance with diffusion. The use of on-line HDF has been proposed to improve the control of hyperparathyroidism and renal osteodystrophy in patients with ESRD (*Canaud et al.*, 2007).

AIM OF THE WORK

The aim of this study is to compare between conventional hemodialysis and on-line hemodiafiltration regarding the control of the clinical, biochemical and radiological manifestations of renal osteodystrophy in children with ESRD.

CHRONIC KIDNEY DISEASE

Chronic kidney disease (CKD) is a serious public health problem, with national surveys showing a considerably higher prevalence than appreciated previously. In the United States there is a rising incidence of kidney failure that is associated in many cases with poor outcomes and high cost (*Coresh et al.*, 2001).

The term chronic kidney disease (CKD) is used to describe patients with kidney damage or decreased level of renal function for three months or more, irrespective of the underlying condition. It is also defined as the presence of kidney damage or GFR below 60ml/min/1.73m2 according to the National Kidney Foundation Disease Outcome Quality Initiative (NKF/DOQI) classification (Table1) (*Hogg et al.*, 2003).

Table 1: Criteria for the Definition of CKD

A patient has CKD if either of the following criteria is present:

1. Kidney damage for >3 months, as defined by structural or functional

- abnormalities of the kidney, with or without decreased GFR, manifested by 1 or more of the following features:
- Abnormalities in the composition of the blood or urine
- Abnormalities in imaging tests
- Abnormalities on kidney biopsy
- 2. GFR <60 ml/min/1.73 m2 for >3 mo, with or without the other signs of kidney damage described above.

(Hogg et al., 2003)

Stages of chronic kidney disease:

NKF/DOQI classified CKD in to 5 stages, based on the level of GFR, as shown in table 2.

Table 2: Classifications of stages of chronic kidney disease.

Stages	GFR (ml/mi	n/1.73m) Description
1	≥ 90	Kidney damage with normal or increased GFR
2	60-89	Kidney damage with mild reduction of GFR
3	30-59	Moderate reduction of GFR
4	15-29	Severe reduction of GFR
5	<15(dialysis)	Kidney failure

(NKF/DOQI 2002).

Risk factors

Although level of GFR, proteinuria, and hypertension are strongly associated risk factors for CKD progression, other reported risk factors associated with CKD progression include low birth weight or prematurity, uric acid, lead or heavy metals, hyperlipidemia, metabolic acidosis, oxidative stress and disorders of bone and mineral metabolism (*Abitbol et al.*, 2009).

While there is ongoing research to clarify the role of these risk factors in renal progression, the search for genetic susceptibility to CKD and its progression in humans has offered not only new directions for research, but also potential targets for intervention (*Ravani et al.*, 2009).

It is likely that the number of individuals at risk for CKD exceeds the number of patients known to have CKD. Pediatric patients who are at increased risk of developing CKD include those with disorders such as those shown in (Table 3).

Table 3: Disorders that increase the risk of CKD.

- Family history of polycystic kidney disease or other genetic kidney disease.
- Children with a history of acute kidney failure resulting from perinatal hypoxemia or other acute insults to the kidneys.
- Renal dysplasia or hypoplasia.
- Urologic disorders-especially obstructive uropathies.
- Vesicoureteral reflux associated with recurrent urinary tract infections and scars in the kidneys.
- Prior history of acute nephritis or nephrotic syndrome.