

Endoscopic Versus Open Saphenous Vein Harvesting During Coronary Artery Bypass Grafting Surgery

Thesis

Submitted for the Partial Fulfillment of the MD Degree in **Cardiothoracic Surgery**

By

Badr Mohammed Abd El-Hameed Mohammed Fayed

M.B.B.Ch, M.Sc. (Cardiothoracic Surgery) Ain Shams University

Under Supervision of

Prof. Dr./ Walaa Ahmed Saber

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Prof. Dr./Mostafa Abdel-Azim Abdel-Gawad

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Brig. Dr./ Tamer Mansour Ayed

Consultant & Head of Cardiothoracic Surgery Department Al Galaa Military Medical Compound

Assist. Prof. Dr. / Sherif Abdel-Samie Mansour

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr./ Walaa Alumed Saber**, Professor of Cardiothoracic Surgery - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr./Mostafa Abdel-Azim Abdel-Gawad**, Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Brig. Dr./ Tamer Mansour Ayed,** Consultant & Head of Cardiothoracic Surgery Department,
Al Galaa Military Medical Compound, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to Assist. Prof. Dr./ Sherif Abdel-Samie Ahmed Mansour, Lecturer of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Badr Fayed

List of Contents

Title Pa	ge No.
List of Tables	i
List of Figures	iv
List of Abbreviations	viii
Introduction	1
Aim of the Work	3
Review of Literature	
Historical Background of CABG	4
Different Conduits for CABG	10
 Gross Anatomy of the Long Saphenous Vein 	23
 Anatomical Landmark of the Long Saphenous V 	ein 28
 Methods of the Long Saphenous Vein Harvestin 	ıg 29
 Complications of Long Saphenous Vein Harvest 	ing50
Patients and Methods	60
Results	70
Discussion	104
Summary	120
Conclusion	123
References	125
Arabic Summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Classification of BMI.	68
Table (2):	Distribution of the studied patients	
	according to Age (years) at the time of	
	operation	71
Table (3):	Shows the different age groups of the studied	
	patients.	72
Table (4):	Distribution of the studied patient	
	according to gender	73
Table (5):	Distribution of the studied patient	
	according to mean of BMI	74
Table (6):	Distribution of the studied patient	
	according to weight categories	75
Table (7):	Distribution of the studied patient	
	according to DM.	76
Table (8):	Distribution of the studied patient	
- 11 (0)	according to smoking history.	
Table (9):	Comparison between groups according to	=0
T 11 (10)	Ejection fraction.	78
Table (10):	Total number of venous grafts in each	70
m 11 (11)	group.	79
Table (11):	Comparison between groups according to	
	mean number of harvested venous grafts per	80
Table (12):	patient.	00
1 able (12):	Comparison between groups according to mean time/ minutes needed for harvesting	
	vein grafts per patient	81
Table (13):		01
1 anie (19):	Comparison between groups according to Overall length of harvested venous grafts	ဝွဂ
Table (14):	Comparison between groups according to	64
1 able (14);	overall length of skin incisions.	83

List of Tables (Cont...)

Table No.	Title	Page N	V 0.
Table (15):	Distribution of the studied pat		
	according to pain after one		05
Table (16):	postoperative Distribution of the studied pat		85
Table (10):	according to pain degree after one		
	postoperative		85
Table (17):	Comparison between groups according		00
Table (11).	Leg wound pain score after one	_	
	postoperative		86
Table (18):	Distribution of the studied pat		
	according to Leg wound infection		
	one week postoperative		87
Table (19):	Distribution of the studied pat	ients	
	according to Hematoma formation		
	one week postoperative		88
Table (20):	Distribution of the studied pat		
	according to Wound dehiscence after		00
m 11 (61)	week postoperative.		89
Table (21):	Distribution of the studied pat		
	according to Leg swelling after one postoperative		90
Table (22):	Distribution of the studied pat		90
1 able (22).	according to Numbness after one		
	postoperative		91
Table (23):	Distribution of the studied pat		
	according to pain after one m	onth	
	postoperative		93
Table (24):	Distribution of the studied pat	ients	
	according to pain degree after one m		
	postoperative		93
Table (25):	Comparison between groups according	_	
	Leg wound pain score after one m		0.4
	postoperative		94

List of Tables (Cont...)

Table No.	Title Pag	e No.
Table (26):	Distribution of the studied patients	3
	according to wound infection after one	e
	month postoperative	95
Table (27):	Distribution of the studied patients	3
	according to Wound dehiscence after one	
	month postoperative	
Table (28):	Distribution of the studied patients	
	according to Leg swelling after one month	
	postoperative	
Table (29):	Distribution of the studied patients	
	according to Numbness after one month	
	postoperative	
Table (30):	Distribution of the studied patients	
	according to Patient satisfaction score o	
- 11 (01)	leg wound cosmoses	
Table (31):	Distribution of the studied patients	
	according to degree of patient satisfaction	
T 11 (00)	of leg wound cosmoses	
Table (32):	Mean of time/days for hospital length o	
— 11 (00)	stay of patients after surgery	
Table (33):	Mean of time/days for hospital length o	
	stay of patients after surgery due to lea	-
	wound morbidity	103

List of Figures

Fig. No.	Title F	age No.
Figure (1):	Long Saphenous Vein used to byp	
Figure (2):	The long saphenous vein and tributaries	its
Figure (3):	The Leg incision over the LSV vein	
Figure (4):	Positioning of the lower limb harvesting the LSV	for
Figure (5):	Conventional harvesting technique the long saphenous vein	e of
Figure (6):	Identification of the LSV and dissec	tion
	over it	32
Figure (7):	Ligating branches of the vein. Note difference between the correct way	
	and the incorrect one (B)	33
Figure (8):	Control of avulsed branches with a suture placed longitudinally to produce	
	the least distortion	
Figure (9):	Blood loss during long saphenous	
	harvesting	
Figure (10):	Components of the Endoscopic Syste	
Figure (11):	Skin incision in EVH	
Figure (12):	The first step is the identification	
	Exposing of the great saphenous	
	(GSV) through a 3-cm incision near	
	knee	43
Figure (13):	The dissection of the vein from	
	surrounding subcutaneous tissue	
Figure (14):	The tunnel of the vein. The vein in	
	center of the tunnel and the tunne	
	kept using CO ₂ insufflation	45

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (15):	After creating a tunnel by mea		
	CO ₂ insufflation, all side branches GSV are identified, coagulated		
	diathermy and transected	_	46
Figure (16):	The final result is demonstrated,		
1 18021 0 (10)	of vein harvested through a		
	incision near the knee and a		
	counter incision in the groin		48
Figure (17):	Adventitial Constriction		
Figure (18):	Non healing wound of leg after		
	harvesting		58
Figure (19):	Endoscopic saphenous		62
Figure (20):	Conventional open saphenous	vein	
	harvesting technique		62
Figure (21):	Visual Analogue Scale		65
Figure (22):	Distribution of the studied pa	tients	
	according to Age (years) at the ti	me of	
	operation		71
Figure (23):	Distribution of the studied pa		
	according to Age (years) at the ti		
	operation.		72
Figure (24):	Distribution of the studied p		
	according to gender		73
Figure (25):	Distribution of the studied p		_,
T ! (2.0)	according to mean of BMI		74
Figure (26):	Distribution of the studied p		==
T' (95)	according to BMI classification		75
Figure (27):	Distribution of the studied p		70
E' (00)	according to DM		76
Figure (28):	Distribution of the studied pa		77
Figure (00).	according to smoking history		77
Figure (29):	Comparison between groups according to ejection fraction	_	78
	TO ETECTION HACHON.		10

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (30):	Total number of harvested grafts in each group		79
Figure (31):	Number of harvested venous grapatient in each group	-	80
Figure (32):	Comparison between groups acc to mean time/ minutes neede	ording	
Figure (33):	harvesting vein grafts per patient Comparison between groups acc to overall length of harvested	ording venous	
Figure (34):	grafts	ording	
Figure (35):	Distribution of the studied paraccording to pain degree after one	atients	00
Figure (36):	postoperative Comparison between groups acc to Leg wound pain score after one	ording	85
Figure (37):	postoperative	atients er one	
Figure (38):	week postoperative Distribution of the studied peaceording to Hematoma formation	atients n after	
Figure (39):	one week postoperative. Distribution of the studied paraccording to Wound dehiscence	atients e after	
Figure (40):	one week postoperative Distribution of the studied pa according to Leg swelling after on	atients	89
Figure (41):	postoperative Distribution of the studied paraccording to Numbness after one	atients	90
	postoperative		91

List of Figures (Cont...)

Fig. No.	Title Page No.
Figure (42):	Distribution of the studied patients
	according to pain intensity after one
	month postoperative
Figure (43):	Comparison between groups according
	to Leg wound pain score after one
E: (44).	month postoperative
Figure (44):	Distribution of the studied patients according to wound infection after one
	month postoperative95
Figure (45):	Distribution of the studied patients
g • (10)	according to wound dehiscence after one
	month postoperative96
Figure (46):	Distribution of the studied patients
	according to Leg swelling after one
	month postoperative
Figure (47):	Distribution of the studied patients
	according to Numbness after one month
Eigene (40).	postoperative
Figure (48):	according to Patient satisfaction score of
	leg wound cosmoses99
Figure (49):	Distribution of the studied patients
g (/-	according to degree of patient
	satisfaction of leg wound cosmoses100
Figure (50):	Mean of time/days for hospital length of
	stay of patients after surgery101
Figure (51):	Mean of time/days for number of extra
	days in hospital of postoperative
	patients due to leg wound morbidity103

List of Abbreviations

Abb.	Full term
BMI	Body massindex
	Coronary artery bypassesgrafting
	Coronary arterydisease
	Complete blood count
	Cardiopulmonarybypass
Creat	
CT-ESVH	Closed tunnel—endoscopic saphenous vein harvesting
CVD	Conventional vein harvesting technique
	Diabetes mellitus
ECG	Electrocardiogram
<i>EF</i>	_
	Endoscopic veinharvesting
FDA	Federal association of food and drugs administration USA
GEA	Gastroepiploic artery
	Gastroepiploic artery
	Great saphenous vein
<i>ICU</i>	Intensive careunit
<i>IMA</i>	Internal mammaryartery
<i>ITA</i>	Internal thoracic artery
<i>LAD</i>	Left anterior descending coronaryartery
LCX/CX	Circumflex artery
<i>LIMA</i>	Left internal mammaryartery
<i>LM</i>	Left main
LOS	Length of stay
<i>LSV</i>	Long saphenousvein
<i>MI</i>	Myocardial infarction
<i>MIVHt</i>	Minimal invasive vein harvesting technique

List of Abbreviations (cont...)

Abb.	Full term
MR	Iitral regurgitation
N.S	Von significant
<i>NAN</i>	No abnormality
<i>NIWHD N</i>	Non infected wound healing disturbance
OCSVH	Open conventional saphenous vein harvesting
OT-ESVH	Open tunnel—endoscopic saphenous vein
	harvesting
OVH	Open vein harvesting
<i>PCI F</i>	Percutaneous coronary intervention
<i>PDA F</i>	Posterior descending artery
<i>PTCA P</i>	Percutaneous transluminal coronary
	angioplasty
<i>PVD P</i>	Peripheral vascular disease
<i>RA R</i>	Radial artery
RCA	Right coronary artery
RCTs	Randomized clinical trials
<i>RIMA R</i>	Right internal mammaryartery
S S	Significant
<i>SBTS</i>	Standard bridging technique
SSV	Short Saphenous vein
<i>STEMIS</i>	ST segment elevation myocardial infarction
SVG	Saphenous vein graft
TR	ricuspid regurge
<i>VASV</i>	isual analogue scale
<i>WBCS V</i>	White blood cells

Introduction

Oronary artery disease (CAD) is the most common heart disease worldwide (Okrainec et al., 2004).

Coronary artery bypass grafting (CABG) remains the gold standard in the treatment of multi-vessel coronary artery disease (CAD) (Wijns et al., 2010).

Despite increasing recognition of benefits of multiple arterial grafting, Long saphenous vein (LSV) remains a frequently chosen conduit for coronary artery bypass grafting (CABG) (Raja et al., 2004; Raja et al., 2009; Dimitrova et al., 2012; Locker et al., 2012).

Traditionally, LSV is harvested using a lengthy incision in the lower limb termed open vein harvesting (OVH). During the last few decades. Minimally invasive techniques have dramatically changed clinical practice in cardiac surgery. Driven by the idea of providing less invasive techniques to improve outcome and patient satisfaction, a variety of new techniques have been suggested. At that time, the term minimally invasive summarized surgery through limited or alternative skin incisions or the use of endoscopic or videoscopic support, as well as to perform cardiac surgery procedures without cardiopulmonary bypass support (Kempfert et al., 2011). More recently, Endoscopic vein harvesting (EVH) has grown in popularity in an effort to reduce the pain and risk

of infection associated with the procedure (Kempfert et al., 2011; Raja et al., 2013).

In the mid-1990's, Surgeons began using endoscopic vein-graft harvesting techniques as an alternative to large, incision-based open vein-graft harvesting improve postoperative discomfort and incision-site complications (Williams et al., 2012).