

Ain Shams University Faculty of Medicine Department of Anesthesiology, Intensive care and Pain Management

A Comparative Study Between Ultrasound Guided Quadratus Lumborum Block Versus Ultrasound Guided Transversus Abdominis Plane Block In Laporoscopic Bariatric Surgery

Thesis

Submitted for Partial Fulfillment of the M.D Degree in Anesthesiology

BY

Doaa Wagdy Gamal El-Deen Muhammad

(M.B., B.Ch, M.Sc. anesthesiology, Faculty of Medicine, Ain Shams University)

Supervised by

Prof. Dr. Azza Mohamed Shafeek Abdelmageed

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Gihan Abdelhalim Gomaa

Assistant Professor of Anesthesiology, Intensive Care and Pain Management
Faculty of Medicine, Ain Shams University

Dr. Fady Adib Abd ElMalek

Lecturer of Anesthesiology, Intensive Care and Pain Management
Faculty of Medicine, Ain Shams University

Dr. Khaled Mohamed Hassan

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018
Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life. Really, I can hardly find the words to express my gratitude to **Prof. Dr. Azza Mohamed Shafeek Abdelmageed**; Professor of Anesthesiology, Intensive Care and Pain Management, faculty of medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would also like to express my sincere appreciation and gratitude to **Prof. Dr. Gihan Abdelhalim Gomaa;** Assistant Professor of Anesthesiology; Intensive Care and Pain Management, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

I am thankful to **Dr. Fady Adib Abd ElMalek;** Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, for his earnest efforts and sincere support that extended throughout this work.

I would like to direct my special thanks to **Dr. Khaled Mohamed Hassan**; Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, for the continuous support and guidance that he offered to me step by step till the end of this thesis.

I dedicate this work to my family and friends; because without their ongoing, sincere support and encouragement, the whole work would not have ever been completed.

Doaa Wagdy

Contents

Acknowledgement	
List of Abbreviations	1
List of Tables	V
List of Figures	VII
Introduction	1
Aim of the Work	3
Review of Literature	4
Pathophysiology of Pain	4

Anatomy of the Abdominal Wall	9
• Overview of Ultrasound-Guided Transversus Abdominis Plane Block	18
Overview of Ultrasound-Guided Quadratus Lumborum Block	23
Pharmacology of Local Anesthetics	30
Pharmacology of Morphine	39
Patients and Methods	49
Results	56
Discussion	75
Conclusion	81
Summary	82
References	84
Arabic Summary	

List of Abbreviations

ABG : Arterial blood gases

AMPA : α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid

ANOVA : Analysis of variance

ASA : American Society of Anesthesiologists

ASIC : Acid-sensing ion channels

BDNF : Brain-derived neurotrophic factor

BMI : Body mass index

CD : Cluster of differentiation

C_m : Minimum concentration

CNS : Central nervous system

CO₂ : Carbon dioxide

COX : Cyclooxygenase

CPP : Cerebral perfusion pressure

CXR : Chest x-ray

CYP : Cytochrome P450

ECG : Electrocardiogram

EEG : Electroencephalography

EO : External oblique muscle

ERK: Extracellular signal-regulated kinases

GABA : Gamma-aminobutyric acid

GDNF : Glial-derived neurotrophic factor

 $\mathbf{H_1}$ and $\mathbf{H_2}$: Histamine receptors

IBW: Ideal body weight

iNOS : Inducible nitric oxide synthase

IO : Internal oblique muscle

IV : Intravenous

Ki : Inhibitory constant

L/M : Lateral/medial

L1 : First lumbar vertebra

LBW: Lean body weight

LD : Latissimus dorsi muscle

M3G : Morphine-3-glucuronide

M6G : Morphine-6-glucuronide

MAO : Monoamine oxidase

MHz : Megahertz

MKP : Mitogen-activated protein kinase phosphatase

MRI : Magnetic resonance imaging

MRP2 : Multidrug resistance-associated protein 2

NGF : Nerve growth factor

NGs : Neutrophilic granulocytes

NIBP : Non-invasive blood pressure

NT : Neurotrophin

OSA : Obstructive sleep apnea

PABA: Para-aminobenzoic acid

Partial pressure of carbon dioxide in arterial blood

PACU: Post-anesthesia care unit

PCA: Patient-controlled analgesia

PFTs : Pulmonary function tests

P-gp : P-glycoprotein

 pK_a : Acid dissociation constant

PM : Psoas major muscle

P-value : Probability value

QL : Quadratus lumborum muscle

QLB : Quadratus lumborum block

RA : Rectus abdominis muscle

RSD : Reflex sympathetic dystrophy

SC : Subcutaneous tissue

 SpO_2 : Peripheral capillary oxygen saturation

 $T^{1/2}$: Half life

T7-T12 : Thoracic vertebrae

TA : Transversus abdominis muscle

TAP : Transversus abdominis plane

TLR : Toll-like receptor

TNF: Tumor necrosis factor

 \mathbf{UGT} : Uridine diphospho-glucuronosyltransferases

VAS : Visual analogue scale

Vd : Volume of distribution

X² : Chi-square

List of Tables

Table	Title	Page
1	Comparison between groups according to demographic data	57

2	Comparison between groups according to intra- operative heart rate	59
3	Comparison between groups according to intra- operative mean arterial blood pressure	60
4	Comparison between groups according to intra- operative SpO ₂	61
5	Comparison between groups according to intra operative end-tidal CO ₂	62
6	Comparison between groups according to post- operative heart rate	64
7	Comparison between groups according to post- operative mean arterial blood pressure	65
8	Comparison between groups according to post-operative SpO ₂	66
9	Comparison between groups according to post- operative respiratory rate	67
10	Comparison between groups according to post- operative VAS (Visual Analogue Scale)	69
11	Comparison between groups according to post- operative Ramsay Score	70
12	Comparison between groups according to time to the first dose of rescue analgesia given	71
13	Comparison between groups according to number of morphine doses	72
14	Comparison between groups according to total morphine consumption	73
15	Postoperative complications of opioids used	74

List of Figures

Fig.	Title	Page
1	Layers of the abdominal wall	9
2	Anatomy of the posterior abdominal wall	15
3	Positioning of the patient and ultrasound probe for TAP block (posterior approach)	20
4	Ultrasound-guided posterior TAP block	20
5	Positioning of the patient and ultrasound probe for TAP block (subcostal approach)	21
6	Ultrasound image of abdominal layers for subcostal approach	22
7	Probe position for anterior QLB	25
8	Ultrasound images of anterior QLB	25
9	Probe position for subcostal QL block	26
10	Ultrasound images of subcostal QL block	26
11	Lateral QL block	27
12	Ultrasound images of lateral QLB	27
13	Ultrasound images of posterior QLB	28
14	Ultrasound images of intramuscular QLB	29
15	Local anesthetic structure	30
16	Bar chart between groups according to age (years)	58
17	Bar chart between groups according to gender	58
18	Line showing the extent of difference in intra- operative heart rate between groups over the periods	60
19	Line showing the extent of difference in intra- operative heart rate between groups over the periods	61
20	Line showing the extent of difference in intra-	62
	operative SpO ₂ between groups over the periods	

21	Line showing the extent of difference in intra- operative end-tidal CO ₂ between groups over the periods	63
22	Line showing the extent of difference in post- operative heart rate between groups over the periods	64
23	Line showing the extent of difference in post- operative mean arterial blood pressure between groups over the periods	65
24	Line showing the extent of difference in post- operative SpO ₂ between groups over the periods	66
25	Line showing the extent of difference in post- operative respiratory rate between groups over the periods	68
26	Line showing the extent of difference in post- operative VAS between groups over the periods	69
27	Line showing the extent of difference in post- operative Ramsay Score between groups over the periods	70
28	Bar chart showing the difference between groups according to the time needed to the first dose of rescue analgesia given	71
29	Bar chart between groups according to frequency of administration of morphine	72
30	Bar chart between groups according to total morphine consumption	73
31	Bar chart between groups according to postoperative complications of opioids used	74

Introduction

Obesity has been associated with an increased hazard ratio for all-cause mortality, as well as significant medical and psychological co-morbidity. Nonsurgical management can effectively induce 5%-10% weight loss and improve health in severely obese individuals resulting in cardio-

metabolic benefit. Bariatric surgery procedures are indicated for patients with clinically severe obesity; currently, these procedures are the most successful and durable treatment for obesity. The best choice for any bariatric procedure (type of procedure and type of approach) depends on the individualized goals of therapy (e.g., weight loss and/or metabolic [glycemic] control), available local expertise (surgeon and institution), patient preferences and personalized risk stratification. At this time, there is still insufficient evidence to generalize in favor of one bariatric surgical procedure for the severely obese population. In general, laparoscopic bariatric procedures are preferred over open bariatric procedures due to lower early postoperative morbidity and mortality (*Jeffrey et al.*, 2013).

In the obese patient, the goal of postoperative pain management is provision of comfort, early mobilization and improved respiratory function without causing inadequate sedation and respiratory compromise. The pathophysiology of obesity, typical co-morbidities and the high prevalence of obstructive sleep apnea (OSA) amongst obese patients make safe analgesic management difficult. In particular, pain control after bariatric surgery is a major challenge. Although several reviews covering anesthesia and analgesia for obese patients are published, there is mainly expert opinion and a paucity of evidence-based recommendations. Advice on general management includes multimodal analgesic therapy, preference for regional techniques, avoidance of sedatives, non-invasive ventilation with supplemental oxygen and early mobilization (*Schug and Raymann*, 2011).

In the past few years, transversus abdominis plane (TAP) block, which was first described by Rafiin in 2001, has been increasingly used for postoperative pain relief after laparoscopic surgery. As a part of multimodal analgesic regimen, TAP block results in less analgesic consumption and less pain at two hours and slightly at six hours after laparoscopic surgery in comparison with the usual opioids alone (*Xiang et al., 2014*).

The quadratus lumborum block (QLB) was first described by Blanco in 2007. The main advantage of QLB compared to the transversus abdominis plane (TAP) block is the extension of local anesthetic agent beyond the transversus abdominis plane to the thoracic paravertebral space. The wider spread of the local anesthetic agents may produce extensive analgesia and prolonged

action of the injected local anesthetic solution. Previous studies showed that both TAP block and QLB might reduce morphine requirements in the postoperative period. However, studies comparing between trans-muscular quadratus lumborum and transversus abdominis plane blocks are of limited number (*Rafa et al.*, 2015).

Aim of the Work

The aim of this work is to study the analgesic efficacy of ultrasound-guided trans-muscular quadratus lumborum block compared with transversus abdominis plane (TAP) block and intravenous opioid drugs during laparoscopic bariatric surgery and in the early postoperative period regarding pain relief, provision of comfort, early mobilization and improved respiratory functions.

Pathophysiology of Pain

Definition of pain

Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage (*Harold et al.*, 2012).

Classification of pain

Pain can be classified according to the neurophysiological mechanism, temporal aspects, etiology, or region affected. Neurophysiological mechanism of pain has been categorized as nociceptive and non-nociceptive pain (*Khalida*, 2016).

Nociceptive pain is presumed to be maintained by continual tissue injury, it results from the activation or sensitization of nociceptors in the periphery, which transduce noxious stimulus into electrochemical impulse. These impulses are then transmitted to the spinal cord and higher rostral centers in the central nervous system. Nociceptive pain is sub-divided into somatic pain and visceral pain (*Massieh and Karen*, 2013).

Somatic pain results from excitation and sensitization of nociceptors in tissues; such as bone, peripheral soft tissue, joints and muscles. It can be intermittent or constant, and is described as aching, stabbing, gnawing or throbbing. (*Khalida*, 2016).

There are five physiological processes involved in the somatic nociception:

- Transduction: noxious stimuli (mechanical, chemical and thermal) act on peripheral nociceptors and are converted into electrical activity; hence, culminating in an action potential. This is carried as a nerve impulse.
- Conduction: nerve impulse travels through the length of first order neurons to reach the synapse with the second order neuron.
- Transmission: synaptic transfer of information takes place at the synapse between the first and the second order neurons in the dorsal horn of spinal cord.
- Perception: the actual conscious experience of pain, both sensory (localization, character and discrimination) and affective (emotional) aspect.
- Modulation: pain experience is not a direct and proportionate mechanical response to the noxious stimuli. A multitude of factors modulates the stimulus–response pathway (Clifford, 2004).

Visceral pain has five important characteristics. Visceral organs are not sensitive to pain. It is not always linked to visceral injury (cutting the intestines causes no pain, but stretching of the bladder causes pain). It is diffuse and poorly localized. It is referred to other locations. It is accompanied by motor and autonomic reflexes; such as nausea and vomiting (*Khalida*, 2016).

Non-nociceptive pain can be sub-divided into neuropathic and idiopathic pain. Neuropathic pain can result from injury to neural structures within the peripheral and central nervous systems. It is believed to be caused by aberrant somatosensory processing in the central and the peripheral nervous systems. Neuropathic pain is usually sharp and burning (*Khalida*, *2016*).

There are three subsets of neuropathic pain:

- Peripherally mediated pain involves the peripheral nerves and brachial plexus.
- Central pain syndrome involves the nervous system.
- Sympathetically mediated pain that can be generated centrally and peripherally;
 like Reflex Sympathetic Dystrophy (RSD) symptoms (*Joachim and Clifford*,
 2007).

Acute Postoperative Pain

Acute pain after surgery has a distinct pathophysiology that reflects peripheral and central sensitization as well as humoral factors contributing to pain at rest and during movement. This can impair functionality and often culminates in delayed recovery. Surgical tissue trauma leads to nociceptor activation and sensitization. As a result, individuals suffer from ongoing pain at rest and increased responses to stimuli at the site of injury (primary hyperalgesia). Different surgical procedures (including debridement for acute burn care) involve distinct organs and specific tissue within and adjacent to them, creating a variety of patterns of nociceptor sensitization and differences in the quality, location and intensity of postoperative pain (*Timothy et al.*, 2017).

Mediators released locally and systemically during and after surgery that contribute to nociceptor sensitization include; prostaglandins, interleukins, cytokines and neurotrophins (e.g. nerve growth factor [NGF], glial-derived neurotrophic factor [GDNF], neurotrophin [NT]-3, NT-5, and brain-derived neurotrophic factor [BDNF]). Decreased tissue pH and oxygen tension, and increased lactate concentration, persist at the surgical site for several days. These responses may contribute to peripheral sensitization (e.g., muscle C-fibers) and spontaneous pain behavior following an incision. Acid-sensing ion channels (e.g. ASIC3) likely transduce this ischemic-like signal. Peripheral neutrophilic granulocytes (NGs) contribute to peripheral sensitization and pain after surgical incision. Endogenous CD14+ monocyte responses (e.g., via the TLR4 signaling pathway) are associated with differences in the time course of postsurgical pain (*Gabriela et al.*, 2015).

Nerves may be injured during surgery and hence discharge spontaneously. Spontaneous action potentials in damaged nerves may account for qualitative features of neuropathic pain that may be present early in the postoperative period and can evolve into chronic neuropathic pain (*Valeria et al.*, 2012).

Noxious input during and after surgery can enhance the responses of nociceptive neurons in the CNS (central sensitization); thereby amplifying pain intensity. The magnitude of central sensitization depends on many factors, including the location of the operative site and the extent of the injury. α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor mediated

spinal sensitization contributes to pain and hyperalgesia after incision. Other molecules involved in central sensitization after surgical incision involve phosphorylated extracellular signal-regulated kinases (ERK), BDNF, Tumor necrosis factor TNF α , iNOS, mitogen-activated protein kinase phosphatase (MKP) 3, monoamine oxidase (MAO) B, toll-like receptor (TLR) 4 receptor and cyclooxygenase (COX) 2 (among others) (*Peter et al.*, 2005).

Spinal inhibitory mechanisms may be able to prevent central sensitization after surgery, for example via spinal α -adrenoceptors, γ -Aminobutyric acid (GABA) -receptors, or enhanced Glutamate transporters, among other mechanisms (*Timothy et al.*, 2017).

Anatomy of the Abdominal Wall

The abdominal wall is a continuous cylindrical myofascial structure that attaches to the thoracic cage superiorly, the pelvic girdle inferiorly, and the spinal column posteriorly. It forms a sturdy, protective musculofascial layer that protects the visceral organs and provides strength and stability to the body's trunk. The boundaries include an anterior, two lateral, and one posterior abdominal walls (*Ki-Jinn et al.*, 2017).

Anatomy of the anterolateral abdominal wall:

The anterolateral abdominal wall extends between the posterior axillary lines on either sides. The superior boundaries are the costal margin of the 7th to 10th ribs and xiphoid process of the sternum, and the inferior boundaries are the iliac crests, inguinal ligament, pubic crest, and symphysis (*Ki-Jinn et al.*, 2017). The anterolateral abdominal wall is composed of five paired muscles: two vertical muscles (the rectus abdominis and the pyramidalis) and three layered flat muscles (the external abdominal oblique, the internal abdominal oblique, and the transversus abdominis muscles) (*Sanjay*, 2016).