

The Uses of Levosimendan in Critically ill Patients

Essay

Submitted for Partial Fulfillment of the Master Degree in Intensive Care Medicine

By

Muhammad Mustafa Ali Abdelkader Elnakeeb

M.B.B.Ch

Supervised by

Prof. Dr. Galal Adel Elkady

Professor of Anesthesia, Intensive care and Pain Management Faculty of Medicine – Ain Shams University.

Dr. Amr Ahmed Kassem

Lecturer of Anesthesia, Intensive care and Pain Management Faculty of Medicine – Ain Shams University.

Dr. Gamal El-Din Adel A. Hameed

Lecturer of Anesthesia, Intensive care and Pain Management Faculty of Medicine – Ain Shams University.

Faculty of Medicine
Ain Shams University
2018

Aeknowledgment

- All praises are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this essay, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Galal Adel Elkady**Professor of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams

 University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- I am also grateful to **Dr. Amr Ahmed Kassem**Tecturer of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams University, who freely gave his time, effort and experience along with continuous guidance throughout this work.
- A lot of thanks are extended to **Dr. Gamal El-Din**Adel A. Hameed Lecturer of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams University for his effort, constant encouragement and advice whenever needed.

Contents

Subjects		Page
List of abbreviations		
Introduction		1
Aim of the Essay		5
Review of literature		
o Chapter (1):	Etiology and	Pathophysiology of
Н	eart Failure	6
○ Chapter(2): M	anagement of H	eart Failure29
• Chapter (3): Pl	harmacology of	Levosimendan55
• Chapter (4):	Uses of Levosi	mendan in Different
C	ritical Diseases	and Its Comparison
w	ith Other Inotro	pes88
Summary		128
References		131
Arabic Summary		<u></u>

List of Abbreviations

ACE : Angiotensin-converting enzyme

ADHF : Acute decompensated heart failure

AMI : Acute myocardial infarction

ARDS : Acute respiratory distress syndrome

ATP : Adenosine triphosphate

BELIEF: The Brazilian Evaluation of Levosimendan

Infusion Efficacy

BNP : Brain natriuretic peptide

CABG: Coronary artery bypass grafting

cAMP : Cyclic adenosine monophosphate

CCB : Calcium channel blockers

cGMP Cyclic guanisine monophosphate

CI : Cardiac index

CMK : Calmodulin-kinase

CN : Calcineurin

CNS : Central nervous system

CO : Cardiac output

COMET: Center for Overview, Meta analysis, and

Evidence-based Medicine Training

COPD : Chronic obstructive pulmonary disease

COX : Cyclooxygenase

CPB : Cardiopulmonary bypass

CPI : Cardiac power index

CS : Cardiogenic shock

E List of Aberrations &

DHA : Docosahexaenoic acid

DHF : Decompensated heart failure

DPD: Diphosphono-1,2-propanodicarboxylic acid

ECG: Electrocardiogram

EF: Ejection fraction

EMA: European Medicines Agency

EPA : Eicosapentaenoic acid

ESRD: End-stage renal disease

FDA : Food and Drug Administration

FiO2 : Fraction of inspired oxygen

GFR : Glomerular filtration rate

IABP: Intra-aortic balloon pump

ICAM-1: Intercellular Adhesion Molecule 1

ICG-PDR: Indocyanine green plasma disappearance rate

iNOS : Inducible NOS

LCOS low cardiac output syndrome

LevoRep: Randomised trial investigating the efficacy and

safety of pulsed infusions of levosimendan in

outpatients with advanced heart failure

LGE: Late gadolinium enhancement

LIDO : Levosimendan Infusion versus Dobutamine

LOS : Length of stay

LPS: Lipopolysaccharide

LV : Left ventricle

LVEF : Left ventricular ejection fraction

E List of Aberrations &

MCS : Mechanical circulatory support

MOF : Multiorgan failure

NAT2 : N-acetyltransferase

NPs: Natriuretic peptides

NT- : N-terminal pro-BNP

proBNP

PCWP: Pulmonary capillary wedge pressure

PET: Positron emission tomography

PGE2 : Prostaglandin E2

PGF2a : Prostaglandin F2a

PGI2 : Prostaglandin I2

RAAS : Renin-angiotensin-aldosterone system

RCT: Randomized controlled trial

REVIVE I: Randomized Multicenter Evaluation

and II of Intravenous Levosimendan

Efficacy trials I and II

RUSSLAN: Randomized study on Safety and effectiveness

of Levosimendan in patients with left ventricular failure due to an Acute myocardial

infarct

RV : Right ventricle

SAH : Subarachnoid hemorrhage

SBP : Systolic blood pressure

SPECT: Single-photon emission computed tomography

Elist of Aberrations &

SURVIVE: Survival of Patients with Acute Heart Failure in

Need of Intravenous Inotropic Support

SVR : Systemic vascular resistance

TAPSE: Tricuspid annular plane systolic excursion

TNF-\alpha: Tumor necrosis factor alpha

TOE: Transoesophageal echocardiography

VIP : Vasoactive intestinal peptide

Introduction

Heart failure is one of the growing problems for both levels of individuals and public health especially as the elderly population is increasing. Acute heart failure is associated with high morbidity and mortality in patients presenting to the emergency department. In the United States, Acute heart failure results in 676,000 annual emergency department visits, with over 80 % of patients requiring hospitalization which is associated with high risk for poor outcomes; more than one-third of patients die or require rehospitalization within 90 days of discharge (*Go et al.*, 2014).

In the treatment of acute decompensation of heart failure caused by left systolic dysfunction, intravenous positive inotropic agents are playing an important role in eliminating hemodynamic abnormalities and improving symptoms (*Cowie et al.*, 2000).

Currently, the most used intravenous positive inotropic agents in clinical practice are β -adrenergic agonists and phosphodiesterase inhibitors. β -adrenergic receptor agonists trigger calcium influx into the myocytes by increasing intracellular cyclic AMP levels through

(cAMP) production, while phosphodiesterase inhibitors increase it by inhibiting its degradation. Increased intracellular calcium levels increase cellular energy needs lead to an increase of myocardial oxygen consumption (Slawsky et al., 2000).

Moreover, it is reported that increased intracellular cyclic AMP and calcium concentration are cardiotoxic. Elevated intracellular calcium concentrations trigger arrhythmias by affecting the electrophysiology of myocytes. As a result, this condition further increases cellular energy need and myocardial oxygen consumption. Although these agents seem useful during the acute exacerbation of heart failure in the short term, it was reported that they cause progression in and increased mortality from the disease (*Abraham et al.*, 2005).

Thus, now, attention is focused on the calciumsensitizing agents that enhance cardiac performance without increasing intracellular calcium and cAMP levels. Among these groups of agents, levosimendan and pimobendan are known as calcium sensitizers that are available for clinical practice. Levosimendan is an inodilator developed for intravenous use in hospitalised patients with acutely decompensated heart failure.

Clinical data from heart failure patients show that levosimendan improves haemodynamics without a significant increase in oxygen consumption, reduces symptoms of acute heart failure, has a beneficial effect on neurohormone levels, has a sustained efficacy due to formation of an active metabolite, and suffers no loss of effect in patients under beta-blockade (*Packer et al., 2013*).

Levosimendan offers a predictable safety profile, no impairment of diastolic function, with no development of tolerance (*Mebazaa et al.*, 2007).

Levosimendan is indicated for the short-term treatment of acutely decompensated severe chronic heart failure in situations where conventional therapy is not sufficient, and in cases where inotropic support is considered appropriate.

In the latest decade, the drug has been tested primarily in the cardiac surgery settings, field in which the drug has shown beneficial hemodynamic and cardioprotective effects and a favorable outcome effect (*Toller et al.*, 2013).

In addition, several studies with repetitive levosimendan dosing in patients suffering from advanced chronic heart failure have shown beneficial effects on haemodynamics, neurohormone levels and symptoms (*Altenberger et al., 2010*).

Finally, levosimendan has also shown preliminary positive effects - mainly in small-scale studies - in different cardiomyopathies requiring inotropic support (*Salmenperä et al.*, 2009).

Aim of the essay

This essay aims at reviewing the current data, clinical use and the development of levosimendan in the treatment of different critical diseases and its comparison to other inotropes.

Etiology and Pathophysiology of Heart Failure

Definition of the Heart Failure

Heart failure is a clinical syndrome characterized by typical symptoms (e.g. breathlessness, ankle swelling and fatigue) that may be accompanied by signs (e.g. elevated jugular venous pressure, pulmonary crackles and peripheral edema) caused by a structural and/or functional cardiac abnormality, resulting in a reduced cardiac output and/ or elevated intracardiac pressures at rest or during stress (*P. Ponikowski et al., 2016*).

Terminology

- Terminology related to the ejection fraction (EF)
 - 1- Heart failure with reduced EF: <40%.
 - 2- Heart failure with midrange EF: 40 -49%.
 - 3- Heart failure with preserved EF: >49% (*Nadruz et al.*, 2017).
 - Terminology related to the course of heart failure
 - 1-Asymptomatic LV systolic dysfunction: A patient who has never exhibited the picture of HF with a reduced LVEF.

- 2-Chronic HF: Patients who have had HF for some time.
- 3-Stable: A treated patient that have remained unchanged symptoms for at least 1 month.
- 4- Decompensated: If chronic stable HF deteriorates (Kalter-Leibovici et al., 2017).
- 5-New-onset (de novo) HF may present acutely or subacute (gradual) fashion.
- 6-Congestive HF: Acute or chronic HF with evidence of volume overload.
- 7-Advanced HF: Severe symptoms, recurrent decompensation and severe cardiac dysfunction (*Ural et al.*, 2016)

• Terminology related to the severity of heart failure

The NYHA functional classification:

Stage I: No limitation of physical activity.

Stage II: Dyspnea with ordinary physical activity.

Stage III: Dyspnea with less than ordinary physical activity.

Stage IV: Symptoms of heart failure at rest (P. Ponikowski et al., 2016)

Etiology of Heart Failure:

• Diseased Myocardium

- 1- Ischemic heart disease
- 2-Toxic damage (substance abuse, heavy metals, cytostatic drugs, immunomodulating drugs, antidepressant drugs, antiarrhythmics and radiation).
- 3- Immune-mediated and inflammatory damage.
 - •Related to infection as Bacteria, spirochetes, fungi, protozoa, parasites (Chagas disease).
 - •Not related to infection as Lymphocytic/giant cell myocarditis, autoimmune diseases, hypersensitivity and eosinophilic myocarditis (Churg–Strauss).

4- Infiltration.

- •Related to malignancy (Direct infiltrations and metastases).
- •Not related to malignancy (Amyloidosis, sarcoidosis, haemochromatosis (iron), glycogen storage diseases (e.g. Pompe disease), and lysosomal storage diseases (e.g. Fabry disease).