

LIPID PROFILE AND IMPULSIVITY IN SUICIDAL PATIENTS WITH MAJOR DEPRESSION

Thesis

Submitted for partial fulfillment of Master Degree In Neuropsychiatry

Presented by

Sara Abdallah Helal

M.B., B.Ch

Supervised by

Prof. Dr. Nermin Mahmoud Shaker

Professor of Psychiatry
Faculty of Medicine, Ain Shams University

Dr. Marwa Abdelrahman Sultan

Assistant Professor of Psychiatry
Faculty of Medicine, Ain Shams University

Dr. Mohamed Youssef Mohamed

Lecturer of Psychiatry
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2018

العلاقة بين مستوى الدهون في الدم والاندفاعية في مرضى الاكتئاب المحاولين للانتحار

رسالة

في طب المخ والأعصاب توطئة للحصول على درجة الماجستير والطب النفسى

مقدمة من

□ سارة عبد الله هلال/الطبيبة بكالوريوس الطب و الجراحة تحت إشراف

□أد/ نرمين محمود شاكر

أستاذ طب المخ والأعصاب والطب النفسي كلية الطب- جامعة عين شمس

د/ مروة عبد الرحمن سلطان

أستاذ مساعد طب المخ والأعصاب والطب النفسي كلية الطب- جامعة عين شمس

د/ محمد يوسف محمد

مدرس طب المخ والأعصاب والطب النفسي كلية الطب- جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, I am very grateful to Allah, the most gracious and merciful for blessing me with all the people who helped me to accomplish this piece of work.

I would like to express my profound gratitude to my respectful **Professor Doctor / Nermin Mahmoud Shaker,**Professor of Neuropsychiatry, Ain Shams University, for her tolerance and encouragement, continuous support, inspiring guidance, and most valuable suggestions. Her contribution in this work was fruitful and most important.

In addition, I would like deeply and sincerely to thank Professor Doctor/ Marwa Abdelrahman Sultan, Assistant Professor of Neuropsychiatry, Ain Shams University, for her valuable ideas, helpful suggestions, and comments. Her great cooperation and guidance were essential for this work.

I wish to express my gratefulness and appreciation to **Doctor/ Mohamed Youssef**, Lecturer of Neuropsychiatry, Ain Shams University, for his generous patience, meticulous supervision, and permanent support.

I would like to express my sincere gratitude to **Prof. Ahmed Saad,** Professor of Neuropsychiatry and the head of the Psychiatry Department, Faculty of Medicine, Ain Shams University, for his guidance and endless support through the past years.

My thanks also go to my entire Professors of Neuropsychiatry department, Faculty of Medicine, Ain Shams University & for all who helped me in this work.

I wish to express my sincere gratitude to the cooperative patients who agreed to participate in this research.

Great love and many thanks to you, my dear family and friends and colleagues for helping me pass hard times and for your cooperation that gave me the opportunity to work in a convenient way.

≥Sara Abdallah Atia Helal

.

CONTENTS

Subjects	Page
• List of Abbreviations	I
List of table	IV
List of Figures	V
• Introduction	1
Aim of the Work	4
Review of literature:	
Chapter 1: Psychiatric Disorders & Suicide	5
Chapter 2 Biomarkers of Suicide	42
Chapter 3: Lipid Profile & Suicide	51
Subjects and Methods	55
Results	
• Discussion	79
• Conclusion	93
• Strengths and Limitation	94
• Recommendations	96
• Summary	98
• References	103
• Appendices	132
Arabic Summary	 -

LIST OF ABBREVIATIONS

5-HIAA	5-hydroxyindoleacetic acid
5-HT	Serotonin
5-HTT	Serotonin transporter
AMPA	α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid
AN	Anorexia nervosa
APA	American Psychiatric Association
ApoE	Apolipoprotein E
ASPD	Antisocial personality disorder
AUD	Alcohol use disorder
BAD	Bipolar affective disorder
BDNF	Brain-derived neurotrophic factor
BIS	Barratt impulsiveness scale
BPD	Borderline personality disorder
BSIS	Beck's Suicidal intent scale
CDC	Centers for Disease Control and Prevention
COMT	Catecholamine-O-methyltransferase
CRP	C-reactive protein
CSF	Cerebrospinal fluid
DA	Dopamine
DSM-IV`.	Disorders, 4 th Edition
FDA	Food and Drug Administration
FH	Family history
GABA	Gamma amino butyric acid
Glu	Glutamate
HDL	High-density lipoprotein

&List of Abbreviations

HPAHypothalamo-adrenal axis
HVAHomovanillic acid
IL-10Interleukin ten
IL-13Interleukin thirteen
$IL-1_{\beta}$ Interleukin one beta
IL-2Interleukin two
IL-4Interleukin four
IL-6Interleukin six
IL-8Interleukin eight
INF-α Interferon- α
INF-γ Interferon-γ
KYNKynurenine
LDAEPLoudness-dependence of auditory evoked potentials
LDLLow-density lipoprotein
MAO-AMonoamine Oxidase A
MDDMajor depressive disorder
MHPG3-methoxy-4-hydroxyphenylglycol
NNumber
NENorepinephrine
NMDAN-methyl-D-aspartate
OCDObsessive-compulsive disorder
OPCOutpatient clinic
PDsPersonality disorders
PFCprefrontal cortex
PHPast history
PICPicolinic acid
PTSDPost traumatic stress disorder

&List of Abbreviations

PUFAs.....Polyunsaturated fatty acids QUINQuinolinic acid **SCID I**Structured Clinical Interview for DSM-IV Axis I **Disorders** SCID IIStructured Clinical Interview for DSM-IV Axis **II** Disorders SD.....Standard Deviation **SPS**.....Suicide probability scale SPSS.....Statistical package for Social Science **SSRIs**Selective serotonin reuptake inhibitors **SUD.....**Substance use disorder TCTotal Cholesterol **TG**.....Triglycerides. **TGF-β.....**Transforming growth factor-β **TH.....**Tyrosine hydroxylase **TNF-α....**Tumor necrosis factor-α **TPH....**Tryptophan hydroxylase **TrkB**Tropomyosin-receptor kinase B **TRP....**Tryptophan USAUnited States of America **VEGF.....** Vascular endothelial growth factor VLDL.....Very-low-density lipoprotein WHO......World Health Organization

LIST OF TABLE

Tab. No.	Subject	Page
Table (1)	Socio-demographic characteristics of the sample	66
Table (2)	Social characteristics of both study groups	67
Table (3)	Family and past History of patients in both groups	68
Table (4)	Clinical Characteristics of Depression	69
Table (5)	Suicide probability scale (SPS) scores between suicidal and non-suicidal groups	70
Table (6)	Barrette Impulsiveness Scale (BIS) scores of both groups	71
Table (7)	Lipid Profile in both groups	71
Table (8)	Characters of Suicidal Attempts	72
Table (9)	Suicide Intent Assessed by BSIS Score	73
Table (10)	Correlation between Lipid Profile and Suicide Intent	74
Table (11)	Correlation between Lipid Profile and Suicide Probability	75
Table (12)	Linear Regression for HDL and SPS Score	77
Table (13)	Correlation between Lipid Profile and Impulsivity	77
Table (14)	Correlation between Impulsivity and Suicide	78
Table (15)	Logistic Regression for Lipid Profile and Occurrence of Suicide	78

€List of Figures

LIST OF FIGURES

Fig. No.	Subject	Page
Fig. (1)	Outcome of Suicide Attempts	73
Fig. (2)	Degrees of suicide intent	74
Fig. (3)	Correlation between HDL and Suicide Probability	76
Fig. (4)	Correlation between LDL and Negative Self-view	76

Abstract

Background: The mechanism underlying the link between lipid profile and suicidality is not yet understood, and is still controversial. Additionally, the relation between lipid profile and impulsivity was not studied in depressed suicidal patients.

Since Cholesterol is a core component of the central nervous system (CNS), essential for the cell membrane stability and the correct functioning of neurotransmission, there might be a correlation between altered lipid profile, suicidal tendencies, and impulsivity in depression.

Objectives: To compare between lipid profile in suicidal and non-suicidal depressed patients and to find out if there is any correlation between impulsivity and lipid profile in depressed patients attempting suicide.

Methodology: This is a cross sectional comparative (case - control) study. The sample was selected from the Institute of Psychiatry, Faculty of Medicine, Ain Shams University Hospital and Al-Mashfa Hospital, from inpatients and outpatients diagnosed with unipolar depression. A sample of 100 patients distributed as 50 cases and 50 controls meeting the inclusion and exclusion criteria.

Results: TC was found significantly lower in suicidal group compared to non-suicidal depressed group. Low HDL level was significantly correlated with suicidality and high suicide intent was correlated with hopelessness. Logistic regression for lipid profile in both groups revealed significant TC and LDL in pr3diction of suicide.

Conclusion: The results of the present study demonstrated a statistical significance regarding TC and LDL in relation to suicidality, which could be a potential marker to detect possibility of suicide in depressed patients.

Recommendations: Further in-depth qualitative research is needed to help in understanding the many vague areas of suicide, its predictors and behaviors associated with it among Egyptian patients. Repeat the study on large sample to compare and give more generalized results and valuable outcomes.

Keywords: Suicide - Major Depressive Disorder – Lipid Profile - Impulsivity

INTRODUCTION

Suicide is a multifaceted public health problem, yearly causing a world-wide premature loss of about one million lives, and generating a cascade of consequences affecting families, friends and societies that are often irrecoverable (*Lee and Kim*, 2011). Regarded as the most dreaded of psychiatric disease outcomes, a diversity of risk factors for suicide have been recognized, of which depression stands prominent (*Gibbs*, 2016). WHO estimates that more than 300 million people now live with depression, which is more than 18% increase between 2005 and 2015 (*Wang et al*, 2016).

Impulsivity also contributes to suicidality, and therefore might be an important construct for further investigation (*Troisi*, 2011).

Studies have proposed biological markers that might be linked to suicidal behaviour and therefore might be used as a tool in detection, prevention and approaches of therapy (*Lee and Kim*, 2011). However, clear evidences on suicide neurobiology are presently lacking (*Wang et al.*, 2016).

Clinically, serum lipids are evaluated based on the level of total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides (TG). Evidence indicated that lipid fluidity evidently modulates serotonin (5-HT) binding in mice brain membranes; thus, decreased cholesterol levels

cause cellular membrane fluidity to increase, rendering 5-HT receptors less exposed to 5-HT in the synaptic cleft. Furthermore, evidence correlates reduced 5-HT activity and suicide (*Diaz-Sastreet et al.*, 2007).

It has been proposed that poor central serotonergic transmission is a biological substrate for impulsivity; and similarly, serum cholesterol has been suggested as a surrogate marker (*Vevera et al.*, 2005), moreover, a correlation between serum cholesterol and various measures of impulsivity across psychiatric diagnoses has been demonstrated (*Troisi*, 2011).

Nonetheless, clear association between serum lipid levels and reported suicidality in observational and epidemiological studies remains controversial. Whereas some human studies disclosed that individuals attempting suicide had lower cholesterol levels, (*Diaz-Sastreet et al.*, 2007) others reported positive association linking cholesterol and completed suicide. (*De Leon et al.*, 2011).

A meta-analysis proposed that suicidal patients had significantly lower serum TC, LDL-C and TG levels compared with non-suicidal patients. In comparison with healthy controls, suicidal patients had significantly lower TC, HDL-C and LDL-C levels. Moreover, compared with the highest serum TC level category, a lower serum TC level was linked to a greater risk of suicidality, counting the risk of attempted suicide and completed suicide (*Wu, et al,*

✓ Introduction

2016). On the other hand, a number of studies showed no evidence for any association between serum cholesterol levels and suicidal behaviour (Roy, et al., 2006).