Meta-analysis of comparative results between minimal invasive and conventional method of vein harvesting in Coronary Artery Bypass Grafting

A meta-analysis

Submitted for Partial Fulfillment of Master Degree in Cardiothoracic Surgery

Presented by Mohammed Ahmed Zedan

M.B.B>CH, Faculty of medicine-AL Minia University

Under supervision of **Prof Dr./ Mohammed El-Fiky**

Professor of Cardiothoracic Surgery Faculty of Medicine- Ain Shams University

Prof Dr./ Yasser Al-Nahaas

Assistant prof of Cardiothoracic Surgury Faculty of Medicine- Ain Shams University

Prof Dr. Moustafa Gamal El-Din

Lecture of Cardiothoracic Surgery Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2018

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

I find no words by which I can express my extreme thankfulness, deep appreciation and profound gratitude to my eminent **Prof. Dr. Mohammed El-Fiky** Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University for giving me the privilege of working under his meticulous supervision and for his generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

I am deeply indebted to, **Prof Dr./ Yasser Al-Nahaas**Assistant prof of Cardiothoracic Surgury, Faculty of Medicine, Ain
Shams University for his great support and careful supervision,
which helped me to overcome many difficulties.

I am also grateful to **Prof Dr. Moustafa Gamal El-Din**Lecture of of Cardiothoracic Surgery, Faculty of Medicine, Ain
Shams University, who freely gave his time, effort and experience
along with continuous guidance throughout this work.

Mohammed Ahmed Zedan

List of Contents

Title	Page
List of Abbervations	I
List of Tables	III
List of Figures	V
Introduction	1
Aim of the Work	3
Review of literature	
- Chapter (1): IHD & CABG)	4
- Chapter (2): Minimally Invasive Open Method	29
- Chapter (3): Meta-analysis	
Patients and methods	69
Results	77
Discussion	109
Conclusion and Recommendations	128
Refernces	130
Arabic Summary	

List of Abbervations

American College of Cardiology ACC

ACS Acute coronary syndrome

AHA American Heart Association

Basic fibroblast growth factor **bFGF**

CABG Coronary-artery bypass grafting

CI Confidence interval

Cardiovascular disease **CVD**

Diseases Database Disease DB

EDRFs Endothelium – derived relaxing factors

EVH Endoscopic vein harvesting

Great saphenous vein GSV

Ischemic heart disease **IHD**

IPT Inferior posterior tibial

LAC Left atrial circumflex

LCA Left coronary artery

Low density lipoprotein LDL

Left main stem LMS

Long saphenous vein LSV

LVS Lateral venous system

MeSH Medical Subject headings

Minimally invasive vein harvesting **MVH**

Non-ST elevation **NSTEMI** segment myocardial

infarction

OR Odds ratio

OVH Open vein harvesting

Posterior descending PD

Platelet-derived growth factor **PDGF**

PVD Peripheral vascular disease

PVs Perforating veins

Right atrial branch; RAO

Right coronary artery **RCA**

SPT Superior posterior tibial

SSV Small saphenous vein

ST-segment myocardial infarction **STEMI**

Transoesophageal echogram TOE

Transthoracic echocardiogram TTE

UK United kingdom

USA United states of America

VEGF/VPF Vascular endothelial cell growth factor/

vascular permeability factor

VEGFA Vascular endothelial growth factor A

List of Tables

Table. No	Title	Page
Table (1)	Classification codes of Ischemic	7
	Heart Disease	
Table (2)	Risk factors for the development of	13
	Ischaemic Heart Disease.	
Table (3)	Points scale used to calculate total	65
	ASEPSIS score	
Table (4)	Points scale for ASEPSIS daily	65
	wound inspection	
Table (5)	Breakdown of ASEPSIS scores	66
Table (6)	Score Category of infection	66
Table (7)	General characteristics of the	79
	randomized prospective studies	
	included in the meta-analysis	
Table (8)	Criteria used to assess methodolgic	81
	quality	
Table (9)	Assessment of the methodologic	82
	quality of randomized prospective	
	studied included in the meta-analysis	
Table (10)	Comparison of pooled demographics	84
	between MVH and OVH in the	
	included studies for meta-analysis	

Tist of Tables 🕏

Table. No	Title	Page
Table (11)	Comparison of pooled demographics	85
	between EVH and OVH in the	
	included studies for meta-analysis	
Table (12)	Types of minimally invasive	91
	techniques used for saphenous vein	
	harvesting in the studies included for	
	meta-analysis	
Table (13)	Evaluated postoperative outcomes in	92
	the studies included for meta-analysis	
Table (14)	Definition of leg wound infection in	98
	the included studies for meta-analysis	
Table (15)	Comparison of pooled postoperative	99
	outcome between MVH and OVH in	
	the included studies for meta-analysis	
Table (16)	Comparison of pooled postoperative	100
	outcome between EVH and OVH in	
	the included studies for meta-analysis	_

List of Figures

Figures. No	Title	Page
Figure (1)	Anterior view of the human heart with	5
	blood vessels identified.	
Figure (2)	Coronary artery anatomy.	6
Figure (3)	Medium powered H&E histological	9
	micrograph of an intimal lesion (x200).	
Figure (4)	Surface anatomy of great saphenous vein	30
Figure (5)	Completely open technique. The vein is	41
	exposed from the ankle up to the mid-	
	thigh.	
Figure (6)	Exposing the vein. The vein is exposed	48
	at the knee using self-retaining retractor and vessel loop.	
Figure (7)	The tunnel of the vein. The vein in the	49
	center of the tunnel and the tunnel is	
	kept using CO2 insufflation.	
Figure (8)	Measuring the vein.	52
Figure (9)	Flow diagram of selection criteria of	78
	the randomized prospective studies	
	included in the meta-analysis.	

Figures. No	Title	Page
Figure (10)	Forest plot of leg wound infection	101
	between minimally invasive vein	
	harvesting (MVH) and open vein	
	harvesting (OVH)	
Figure (11)	Forest plot of leg wound infection	101
	between endoscopic vein harvesting	
	(EVH) and open vein harvesting (OVH)	
Figure (12)	Forest plot of leg wound pain incidence	102
	between minimally invasive vein	
	harvesting (MVH) and open vein	
	harvesting (OVH).	
Figure (13)	Forest plot of leg wound pain incidence	102
	between endoscopic vein harvesting	
	(EVH) and open vein harvesting	
	(OVH).	
Figure (14)	Forest plot of graft occlusion between	103
	endoscopic vein harvesting (EVH) and	
	open vein harvesting (OVH).	
Figure (15)	Forest plot of graft stenosis between	103
	endoscopic vein harvesting (EVH) and	
	open vein harvesting (OVH).	

Figures. No	Title	Page
Figure (16)	Forest plot of harvest time between	104
	minimally invasive vein harvesting	
	(MVH) and open vein harvesting	
	(OVH)	
Figure (17)	Forest plot of harvest time between	104
	endoscopic vein harvesting (EVH) and	
	open vein harvesting (OVH)	
Figure (18)	Forest plot of hospital stay between	105
	minimally invasive vein harvesting	
	(MVH) and open vein harvesting	
	(OVH)	
Figure (19)	Forest plot of hospital stay between	105
	endoscopic vein harvesting (EVH) and	
	open vein harvesting (OVH)	
Figure (20)	Forest plot of the proportion of	106
	conversion of minimally invasive vein	
	harvesting (MVH) to open vein	
	harvesting (OVH)	
Figure (21)	Forest plot of the proportion of	106
	conversion of endoscopic vein	
	harvesting (EVH) to open vein	
	harvesting (OVH)	

List of Figures 🕏

Figures. No	Title	Page
Figure (22)	Funnel plot (Assessment of publication	107
	bias) for comparison between MVH and OVH.	
Figure (23)	Funnel plot (Assessment of publication	108
	bias) for comparison between EVH and	
	OVH.	

Introduction

onceptually, meta-analysis uses a statistical approach to combine the results from multiple studies in an effort to increase power (over individual studies) to improve estimates of the size of the effect and/or uncertainty when reports disagree. It is also most often used to assess the clinical effectiveness of healthcare intervention; it does this by combining data from two or more randomized control trials (Walker et al., 2004).

Coronary-artery bypass grafting (CABG) is one of the most commonly performed surgical procedures and improves the clinical outcomes in appropriately selected patients. Despite increased use of an arterial conduit, the greater saphenous vein remains the conduit that is used most often in CABG (*Bhuvaneswari et al.*, 2016).

The choice of the graft conduit for coronary artery bypass grafting (CABG) has significant implications both in the short- and long-term. The potency of a coronary conduit is closely associated with an uneventful postoperative course, better long-term patient survival and superior freedom from re-intervention. However, long saphenous vein (LSV) continues to be utilized universally as patients presenting for CABG often have multiple

coronary territories requiring revascularization (Heyman Luckraz et al., 2016). Minimal invasive techniques such as endoscopic vein harvesting (EVH) have therefore been developed to reduce post-coronary artery bypass grafting (CABG) leg wound complication. Currently, EVH is the method of choice in many centers as it allows lower postsurgical complication rates compared to the conventional method (Gianluigi et al., 2016).

Traditionally, the saphenous vein is harvested under direct vision (open harvesting) with the help of linear incisions along the course of the vein. This approach is associated with discomfort and the risk of complications, including edema, hematoma, delayed healing, cellulitis, and wound dehiscence (Sanjay et al., 2016).

Aim of the work

The aim of this work to study efficiency, safety and complication of minimally invasive greater saphenous vein harvesting versus open method especially wound infection and vein graft failure.

Chapter 1

IHD & CABG

Development and anatomy of the coronary arteries

As with any organ, the heart requires its own supply of blood for continued functioning. The supply of blood to the myocardium occurs via the coronary artery circuit (**figure 2**). Their name is derived from the Latin 'Corona', meaning crown as the main vessels encircle the interventricular and atrioventricular grooves (*Kivimaki et al.*, 2012).

The arterial tree has two main compartments; firstly, the main arteries (table 1) and ramifications on the surface of the myocardium, known as the extramural coronary system. Secondly, the branches of the surface vessels which penetrate deep into the myocardial tissues are known as the intramural coronary system (*Kivimaki et al.*, 2012).

The extramural coronary system is formed from two main arteries. The left coronary artery (LCA) and the right coronary artery (RCA). A third vessel exists in up to 50% of the population and is known as the conus artery. The diameters of the vessels are given in **table 1**. The