BIOCHEMICAL STUDIES ON SOME BIOACTIVE COMPOUNDS FROM FRUIT BY-PRODUCTS

By

HABIBA ABD EL-AZIZ AHMED

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agriculture Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2016

APPROVAL SHEET

BIOCHEMICAL STUDIES ON SOME BIOACTIVE COMPOUNDS FROM FRUIT BY-PRODUCTS

M.Sc. Thesis In Agric. Sci. (Agriculture Biochemistry)

By

HABIBA ABD EL-AZIZ AHMED

B.Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 2011

APPROVAL COMMITTEE

Dr. SOBHY AHMAD EL-SOHAIMY
Researcher Professor of Biochemistry, Mubarak City for Science and
Technology, Arid Lands Cultivation Research Institute, Alexandria
Dr. HANY ABDEL-AZIZ EL-SHEMY
Professor of Biochemistry, Fac. Agric., Cairo University
Dr. AHMED MAHMOUD MOSTAFA ABOUL-ENEIN
Professor of Biochemistry, Fac. Agric., Cairo University
Trotossor of Dioenciastry, rue. rigites, outro oniversity
Dr. FATEN MOHAMED ABOU-ELELLA
Professor of Biochemistry, Fac. Agric., Cairo University
Date: 16/8/2016

SUPERVISION SHEET

BIOCHEMICAL STUDIES ON SOME BIOACTIVE COMPOUNDS FROM FRUIT BY-PRODUCTS

M.Sc. Thesis
In
Agricultural Sci. (Agriculture Biochemistry)

 $\mathbf{B}\mathbf{v}$

HABIBA ABD EL-AZIZ AHMED

B.Sc. Agric. Sci. (Agriculture Biochemistry), Fac. Agric., Cairo Univ., 2011

SUPERVISION COMMITTEE

Dr. AHMED MAHMOUD MOSTAFA ABOUL-ENEIN Professor of Biochemistry, Fac. Agric., Cairo University

Dr. FATEN MOHAMED ABOU-ELELLA Professor of Biochemistry, Fac. Agric., Cairo University

Dr. ZEINAB HANEM ABD EL-RAHMAN SALAMA Researcher Professor of Plant Nutrition, National Research Centre Name of Candidate: Habiba Abd El-Aziz Ahmed Degree: M.Sc. Title of Thesis: Biochemical Studies on Some Bioactive Compounds From

Fruit By-products

Supervisors: Dr. Ahmed Mahmoud Mostafa Aboul-Enein

Dr. Faten Mohamed Abou-Elella

Dr. Zeinab Hanem Abd El-Rahman Salama

Department: Agriculture Biochemistry

Approval:16 / 8 /2016

ABSTRACT

This research was carried out to investigate the chemical composition, and phytochemicals of some fruit by-products; kiwi peels (KP), banana peels (BP), banana leaves (BL) and olive leaves (OL). All tested samples were extracted by water, 80 % methanol, 80% ethanol and 80% acetone. Total phenols, flavonoids and tannins for all extracts were determined as well as the sample extracts were evaluated for their antioxidant, antimicrobial, anticancer and anti-diabetic activities. Phenolic compounds isolated from acetone extracts of samples were characterized and identified by HPLC.

Antioxidant assays by DPPH, ABTS, reducing power and Fe²⁺ chelating were evaluated. The best IC₅₀ values to quench the DPPH', ABTS^{•+} and Fe²⁺ chelating of these samples extracts were obtained by acetone extracts. Acetone extracts (600µg/ml) showed higher antimicrobial activity than ethanolic extracts of KP, BP, BL and OL against gram positive and negative bacteria and fungi. The results showed that the acetone extracts of KP, BP, BL and OL exhibited cytotoxic effects on cancer human cells in a dose dependent manner assessed by MTT assay. Diabetes was induced in female rats using streptozotocin (45 mg/kg body weight). Oral ingestion (500 mg/kg bw daily) of KP, BP, BL and OL (acetone extracts) for 30 days led to decrease blood glucose levels, restored renal and liver function. In addition, acetone extracts for tested samples reduce GPX, GST and catalase activity, as well as antiinflammatory biomarkers of diabetic rats. The histopathological study revealed protective effect of acetone extracts on β-cells, kidney and liver in diabetic rats and apparent normal. It could be concluded that, the antioxidant and antihyperglycemic properties of plants extracts may offer a potential therapeutic source for the treatment of diabetes.

Keywords: Antioxidant, antimicrobial, anticancer, anti-diabetic, kiwi, banana, olive wastes.

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my Mother, my Father, my Brother's, my Sister's and my Friends for their patience and help, for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Ahmed Mahmoud Mostafa Aboul-Enein**, Professor of Biochemistry, Faculty of Agriculture, Cairo University for suggesting the problems, supervision, continued assistance and their guidance through the course of study.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Zeinab Hanem Abd El-Rahman Salama**, Researcher Professor of plant Nutrition, Department of Plant Biochemistry, National Research Center, for suggesting the subject, for the extremely good research facilities, constructive supervision and criticism throughout the course of the work.

In addition, many thanks to **Dr. Faten Mohamed Abou-Elella**, Professor of Biochemistry, Faculty of Agriculture, Cairo University for help me in the writing of the thesis and support me to complete this thesis and help me all the time. Grateful appreciation is also extended to **Dr. Alaa Gaffar**, Associate Professor of Biochemistry, Department of Plant Biochemistry, and to **Dr. Hanan Farouk**, Researcher Professor of Biochemistry, Department of Therapeutic Chemistry, National Research Center, for their help in the Biochemical assay and the revise of the thesis. Their knowledge and logical way of thinking has been of great value to me. Their understanding, encouragement and personal guidance provided a good basis for the present thesis.

In addition, many thanks to **Dr. Ayman Abdel aziz** and to **Dr. Fathy Mehaya**, Researchers of Food Technology, National Research Center, for their help me all the time.

Also, Grateful appreciation to all staff members of Biochemistry Department, Faculty of Agriculture, Cairo University, and to all staff members of Plant Biochemistry, National Research Center.

LIST OF ABBREVIATIONS

FW Fresh weight DW Dry weight

GAE Gallic acid equivalent
CE Catechin equivalent
QE Quercetin equivalent
TAE/TE Tannic acid equivalent

rt Retention time

MIC Minimum Inhibitory Concentration
MFC Minimal Fungicidal Concentration
MCF7 Michigan Cancer Foundation-7

HepG2 Hepatoma
TL Total lipid
TG Triglyceride
TC Total cholesterol

HDL-C High density lipoprotein-cholesterol

ALT Alanine aminotransferase AST Aspartate aminotransferase

ALP Alkaline phosphatase
GSH Reduced glutathione

NO Nitric oxide

GPX Glutathione peroxidase
GST Glutathione-s-transferase

MAD Malondialdehyde

CAT Catalase

ICAM Intercellular adhesion molecules VCAM Vascular cell adhesion molecules

(IL)-1 β Interleukin 1 beta

TNF-α Tumor necrosis factor-alpha

TGF-β Transforming growth factor-Beta

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Chemical composition	4
a. Chemical analysis of kiwi (Actinidia deliciosa)	
peels	4
b. Chemical composition of banana (<i>Musa</i>	
sapientum) peels	6
c. Chemical composition of banana (Musa	
sapientum) Leaves	10
d. Chemical composition of olive (<i>Olea europeae</i> L.)	
leaves	11
2. Secondary metabolites	13
a. Total phenolic, flavonoid and tannins of kiwi	
peels	13
b. Total phenolic, flavonoid and tannins of banana	
peels	15
peels	
leaves	17
d. Total phenolic, flavonoid and tannins of olive	
leaves	18
e. Phenolic profile of tested samples by HPLC	20
3. Antioxidant activity	24
a. Antioxidant activity of kiwi peels	24
b. Antioxidant activity of banana peels	25
c. Antioxidant activity of banana leaves	27
d. Antioxidant activity of olive leaves	28
4. Antimicrobial activity	30
a. Antimicrobial activity of kiwi peels	30
b. Antimicrobial activity of banana peels	31
c. Antimicrobial activity of banana leaves	32
d. Antimicrobial activity of Olive leaves	33
5. Anticancer activity	35
6. Antidiabetic activity	39
MATERIALS AND METHODS	45

Preparation of samples	45
1. Proximate analysis	46
a. Determination of moisture content	46
b. Determination of total carbohydrate	46
c. Determination of total lipid	47
d. Determination of total nitrogen and crude protein	47
e. Determination of ash content	48
f. Mineral composition determination	49
2. Secondary metabolites analysis	50
a. Determination of total phenolic content (TPC)	50
b. Determination of total flavonoids content (TFC)	51
c. Determination of total tannins content	52
d. Phenolic acids profile by HPLC	52
3. Measurement of antioxidant capacity	54
a. DPPH free radical scavenging activity	54
b. ABTS.+ assay	55
c. Reducing power activity assay	56
d. Ferrous chelating activity (FCA)	57
4. In vitro antimicrobial assay of samples ethanolic	
and acetone extracts	57
5. Cytotoxic effect on human cell line (HePG2 and	
MCV-7)	58
6. Animal experiments (Hyperglycaemic experiment)	60
Basal diet	60
Experimental design	61
Sample preparations for analysis	62
Analysis of biochemical parameters	63
1. Pancreatic function	63
a. Determination of blood glucose	63
b. Determination of α- amylase activity	64
2. Lipid profile	65
a. Determination of serum total lipid (TL)	65
b. Determination of triglycerides (TG)	66
c. Determination of total cholesterol (TC)	68
d. Determination of high density lipoprotein	
cholesterol (HDL-C)	69
3. Liver function	70

a. Determination of alanine aminotransferase (ALT)	70
b. Determination of aspartate aminotransferase (AST)	71
c. Determination of alkaline phosphatase (ALP)	73
d. Total bilirubin	74
e. Determination of total protein	75
4. Antioxidant biomarkers and oxidative stress	75
a. Determination of glutathione reduced (GSH)	75
b. Determination of nitric oxide	77
c. Determination of glutathione peroxidase (GPX)	78
d. Determination of glutathione-s-transferase (GST)	79
e. Determination of catalase (CAT)	80
f. Determination of lipid peroxide (malondialdehyde)	81
5. Determination of renal function	82
a. Determination of creatinine	82
b. Determination of urea	83
6. Immunosorbent assay	84
7. Histopathological examination	87
RESULTS AND DISCUSSION	88
1. Chemical composition	88
2. Phytochemical constituents	92
3. HPLC analysis of phenolic compounds of some	
fruit crops byproduct	95
4. Biological studies	97
a. Antioxidant activity	97
1. DPPH radical-scavenging activity of different	
fruit crops byproduct	98
2. ABTS ^{.+} radical Cation scavenging activity	100
3. Reducing power of some fruit crops byproduct	102
4. Fe ²⁺ chelating ability	104
b. Antimicrobial activity	108
c. In vitro anticancer studies	110
d. Antidiabetic	111
1. Effect of 80% acetone extracts of tested plants on	
pancreatic function	112
2. Effect of 80% acetone extracts of tested plants on	
lipid profile	115

3. Effect of 80% acetone extracts of tested plants on	
liver functions of diabetic and treated groups	120
4. Determination of total bilirubin and protein	124
5. Effect of 80% acetone extract of tested plants on	
antioxidant biomarkers and oxidative stress	127
6. Effect of 80% acetone extracts of the tested	
samples on renal functions	136
7. Effect of 80% acetone extract of the tested plants	
on VCAM and ICAM-1 levels	139
8. Effect of 80% acetone extracts of tested plants on	
TNF- α, TGF- β1 and IL-1B levels and anti-	
inflammatory enzyme activity (paraoxonase)	143
9. Histopathological examination of hyperglycemic	
experiment	149
a. Pancreas	149
b. Liver	155
c. Kidneys	160
SUMMARY	166
REFERENCES	173

LIST OF TABLES

No.	Title	Page
1.	Chemical composition of some fruit crops by-product	89
2.	Macronutrients composition of some fruit crops by-product (g/100g dry weight basis)	91
3.	Micronutrient composition of some fruit crops by-product (µg/g dry weight basis).	92
4.	Total phenolic (TP), total flavonoid (TF) and total tannin (TT) in different solvent extracts of kiwi and banana peels	93
5.	Total phenolic (TP), total flavonoid (TF) and total tannin (TT) in different solvent extracts of leaves for banana and olive	95
6.	Quantification of the main phenolic compounds present in 80% acetone extracts (mg/kg crud extract) by HPLC.	97
7.	Antioxidant activities of some fruit crops byproduct extracts on DPPH radical.	99
8.	Antioxidant activities of some fruit crops byproduct extracts on DPPH radical	100
9.	Antioxidant activities of kiwi and banana peel extracts on ABTS radical	101
10.	An antioxidant activity of banana and olive leaves extracts on ABTS radical.	102
11.	Reducing power under different concentrations of some fruit crops by-product extracts	104
12.	Reducing power under different of some fruit crops by- product extracts	105
13.	Antioxidant properties of some fruit crops by-product on	106

	Fe2+ chelating activity
14.	Antioxidant properties of some fruit crops by-product on Fe2+ chelating activity
15.	Antimicrobial activity of methanolic and acetonic extracts of the experimental fruit crops byproducts.
16.	Cytotoxic activity of the experimental fruit crops byproduct 80% acetone extract at concentration of $100\mu g/ml$.
17.	Effect of 80% acetone extracts of tested plants on glucose level and α -amylase activity.
18.	Effect of 80% acetone extracts of tested plants on total lipid (TL) and triglyceride (TG)
19.	Effect of 80% acetone extracts of tested plants on total cholesterol (TC) and HDL-C
20.	Effect of 80% acetone extracts of plants tested on ALT and AST enzyme activities.
21.	Effect of 80% acetone extracts of plants tested on ALP enzyme activity
22.	Effect of 80% acetone extracts of tested plants on bilirubin and total protein.
23.	Effect of 80% acetone extracts of tested plants on GSH and NO levels.
24.	Effect of 80% acetone extracts of tested plants on GPX and GST activities
25.	Effect of 80% acetone extracts of tested plants on catalase activity and lipid peroxide level
26	Effect of 80% acetone extracts of tested plants on

	creatinine and urea levels	
27.	Effect of 80% acetone extract of tested samples on VCAM and ICAM-1 levels.	142
28.	Effect of 80% acetone extracts of tested plants on TNF- α and IL-1B levels.	145
29.	Effect of 80% acetone extracts of tested plants on TGF-β level and paraoxonase activity	147

LIST OF FIGURES

No. Title Page