EXPERIMENTAL AND NUMERICAL INVESTIGATION OF AN INNOVATIVE SHEAR WALLS COUPLING FOR ENHANCEMENT OF SEISMIC PERFORMANCE OF RC STRUCTURES

By

DALIA FAWZY ABDEL KHALEK ARAFA

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Structural Engineering

Faculty of Engineering, Cairo University
Giza, Egypt
2015

ACKNOWLEDGMENTS

First, I would like to praise Allah for His Bounty He blessed me with; that He gave me the ambition, ideas, strength and endurance to go through all difficulties and achieve this work. My warmest appreciation and deepest gratitude are due for my research advisor *PROF. DR. HAMED M.MAHMOUD SALEM*. He provided invaluable advising throughout the years of this study. His deep yet very broad knowledge, continuous encouragement and support, keen supervision and meticulous revisions tremendously helped me achieve this work. I learned a lot through my rich experience with him on the academic, professional and personal levels.

Special thanks are also for other members of the dissertation committee; PROF. DR. MOHAMED EL SAID ISSA, PROF. DR.MOHAMED TALAT MOSTAFA and PROF. DR. OMAR ALY EL-NAWAWY.

I would like also to express my gratitude to the **Housing and Building National Research**Center and specially the Concrete Constructions Research Institute Laboratory and the Laboratory Staff for providing professional technical quality service to accommodate the challenging test setup and loading protocol of the experimental phase of this study.

I would like also to extend my deep thanks to *DR.HADAD SAID HADAD*, Head of the Concrete Constructions Research Institute and *DR.YEHIA ABDEL MEGID*, Head of the Concrete Constructions Research Institute Laboratory for their continuous help and support through the study.

Finally, I would like to express my sincere love and warmest gratitude to my beloved family; my great parents for their continuous support, encouragement and prayers greatly helped me achieve this work.

Table of Contents

ACKNOWLEDGMENTS	i
TABLE OF CONTENTS	ii
LIST OF TABLES	iii
LIST OF FIGURES	iv
ABSTRACT	v
CHAPTER (1): INTRODUCTION	1
1.1 INTRODUCTION	1
1.2 PROBLEM STATEMENT	1
1.3 METHODOLOGY	3
1.4 RESEARCH PROGRAM OBJECTIVES	3
1.5 THESIS LAYOUT	4
CHAPTER (2): BACKGROUND AND LITERATURE REVIEW	5
2.1 GENERAL	5
2.2 FAILURE MODES IN SHEAR WALLS	5
2.3 FUNDAMENTAL ASSUMPTIONS FOR STRUCTURAL ANALYSIS	6
2.4 DYNAMIC RESPONSE OF MULTISTORY BUILDINGS	6
2.4.1 Dynamic Inelastic Time-History Analysis	6
2.4.2 Modal Superposition Techniques	6
2.4.3 Equivalent Lateral Force Procedures	7
2.5 HISTORICAL REVIEW	7
2.5.1 Stiffening of Shear Walls	7
2.5.2 Outrigger – Braced Coupled Shear Walls	8
2.5.3 Stiffened Coupled Shear Walls	8
2.5.4 Stiffened Coupled Shear Walls	9
2.5.5 Structural Performance of Multi-Outrigger-Braced Tall Buildings	9
2.5.6 Optimized Use of Multi-Outriggers System to Stiffen Tall Buildings	10
2.5.7 Analysis of non-planar Shear Wall Structures with Stiffening Beam	11
2.5.8 A Study on Static and Dynamic Behavior of Outrigger Structural System for Tall Building	11
2.5.9 Feasibility Studies on the Use of Outrigger System for RC Core Frames	13
2.5.10 Optimum Position of Outrigger System for High-Rise Reinforced Concrete Buildings under Wind and Earthquake Loadings	14
2.5.11 Application of Outrigger in Slender High Rise Building to reduce Fundamental Time Period	15
CHAPTER (3): DESIGN OF FRAMED SHEAR WALL TESTING	17

3.1 INTRODUCTION	17
3.2 SELECTION AND DIMENSIONING OF THE SPECIMENS	17
3.3 TEST PARAMETERS	19
3.4 TEST SETUP	19
3.5 HANDLING OF SPECIMENS	20
3.6 LOADING SEQUENCE	21
3.7 CHECK OF LATERAL BUCKLING (SLENDERNESS LIMIT) OF SPECIMENS	21
3.8 SPECIMEN EXPECTED MECHANISM	21
3.9 PIECEWISE HINGING ANALYSIS FOR SPECIMEN SWB10X20	23
CHAPTER (4): SPECIMENS MANUFACTURE AND TEST PREPARATION	31
4.1 INTRODUCTION	31
4.2 SPECIMEN FORMWORK	31
4.3 FORMING OF STEEL BARS	31
4.4 POURING OF CONCRETE	35
4.5 THE CUBIC COMPRESSION STRENGTH OF THE SPECIMENS	41
4.6 STEEL BARS TEST	41
4.7 STRAIN GAUGES	41
4.8 HANDLING OF SPECIMENS	42
4.9 RECORDED OUTPUTS	43
4.9.1 Strain Measurements	43
4.9.2 Displacement Measurements	43
4.9.3 Load Measurements	44
CHAPTER (5): EXPERIMENTAL RESULTS	45
5.1 INTRODUCTION	45
5.2 TEST SETUP OF SPECIMEN SWB 10X20	45
5.3 RACKING TEST OF SPECIMEN SWB 10X20	46
5.4 SPECIMEN SWB 10X20 RESULTS	46
5.4.1 Cracks Propagation and Failure Modes	46
5.4.2 Lateral Load - Deflection Characteristics	47
5.4.3 Concrete Strains in Walls	48
5.4.4 Reinforcement Strains in Walls	49
5.4.5 Reinforcement Strains in connecting Beam	50
5.5 TEST SETUP OF SPECIMEN SWB 10X30	51
5.6 Racking Test of Specimen SWB 10X30	51
5.7 SPECIMEN SWB 10X30 RESULTS	52
5.7.1 Cracks Propagation and Failure Modes	52
5.7.2 Lateral Load - Deflection Characteristics	56

5.7.3 Vertical Concrete Strains in Walls	56
5.7.4 Reinforcement Strains in Walls	57
5.7.5 Reinforcement Strains in connecting Beam	58
5.8 TEST SETUP OF SPECIMEN SWB 10X40	60
5.9 Racking Test of Specimen SWB 10X40	60
5.10 Specimen SWB 10X40 Results	60
5.10.1 Cracks Propagation and Failure Modes	60
5.10.2 Horizontal Load - Deflection Characteristics	62
5.10.3 Vertical Concrete Strains in Walls5.10.4 Reinforcement Steel Strains in Walls	63 64
5.10.5 Reinforcement Steel Strains in connecting Beam	65
5.11 TEST SETUP OF SPECIMEN SWB 10X50	66
5.12 Racking Test of Specimen SWB 10X50	66
5.13 Specimen SWB 10X50 Results	66
5.13.1 Cracks Propagation and Failure Modes	66
5.13.2 Horizontal Load - Deflection Characteristics	68
5.13.3 Vertical Concrete Strains in Walls	69
5.13.4 Reinforcement Strains in Walls	69
5.13.5 Reinforcement Strains in connecting Beam	70
5.14 TEST SETUP OF SPECIMEN SWB10X60	71
5.15 Racking Test of Specimen SWB 10X60	72
5.16 Specimen SWB 10X60 Results	72
5.16.1 Cracks Propagation and Failure Modes	72
5.16.2 Horizontal Load - Deflection Characteristics	74
5.16.3 Vertical Concrete Strains in Walls	74
5.16.4 Reinforcement Strains in Walls	75
5.16.5 Reinforcement Strains in connecting Beam	76
CHAPTER (6): EVALUATION OF EXPERIMENTAL TEST RESULTS	78
6.1 INTRODUCTION	78
6.2 INFLUENCE OF CONNECTING BEAM ON LATERAL LOAD	78
6.3 INFLUENCE OF CONNECTING BEAM ON TOP DRIFT	79
6.4 INFLUENCE OF CONNECTING BEAM ON ENERGY DISSIPATION	80
6.5 INFLUENCE OF CONNECTING BEAM ON DUCTILITY	80
6.5.1 Ductility Definition	80
CHAPTER (7): THE COMPUTER MODELING AND ANALYSIS	82
7.1 INTRODUCTION	82
7.2 ELS SOFTWARE THEORETICAL APPROACH	82
7.3 ELS Model FOR EXPERIMENTAL VERIFICATION	82

7.4 VERIFICATION OF ELS MODEL WITH EXPERIMENTAL RESULTS	83
7.4.1 Horizontal Load – Top Drift Comparative Study	83
7.4.2 Cracking Pattern Comparative Study	85
7.4.3 Numerically-Obtained Base Moments Reductions	88
CHAPTER (8): SEISMIC EVALUATION OF FULL-SCALE STRUCTURE	90
WITH PROPOSED COUPLING SYSTEM	0.0
8.1 OVERVIEW	90
8.2 PROTOTYPE BUILDING ELASTIC ANALYSIS USING FINITE EELEMENT METHOD (FEM)	90
8.2.1 ADVANTAGES OF THE PROPOSED TECHNIQUE	91
8.3 PROTOTYPE BUILDING NON-LINEAR ANALYSIS USING APPLIED	92
ELEMENT METHOD (AEM)	
8.3.1 PROTOTYPE BUILDING LATERAL LOAD CAPACITY	92
8.3.2 PROTOTYPE BUILDING REDUCTIONS IN LATERAL DRIFT	93
8.3.3 PROTOTYPE BUILDING BASE MOMENT REDUCTION IN	94
8.3.4 SHEAR WALLS WITHOUT COLUMNS CONTRIBUTION	95
8.3.5 DIFFERENCE IN DEFLECTION SHAPES AND STOREY DRIFT	96
8.4 EFFICIENCY OF THE PROPOSED SYSTEM WITH INTERMEDIATE BEAM AT MID-HEIGHT OF BUILDING	97
8.5 SCALED MODEL ELASTIC ANALYSIS USING FEM	100
8.6 SCALED MODELS NON-LINEAR ANALYSIS USING AEM	101
8.7 STAGES OF LOADING IN ELS SOFTWARE	102
8.7.1 SCALED MODEL REDUCTION IN BASE MOMENT	103
8.7.2 SCALED MODEL REDUCTION IN LATERAL DRIFT	105
8.7.3 SCALED MODEL INCREASE IN LATERAL LOAD CAPACITY	106
8.8 DYNAMIC ACTIONS ON BUILDINGS	107
8.9 BASIC ASPECTS OF SEISMIC DESIGN	107
8.10 FUNDAMENTAL PERIOD (T) AND MODE SHAPES	108
8.11 SELECTION OF TIME – HISTORY RECORD	108
8.12 FULL SCALE MODEL ANALYSIS	110
8.12.1 TIME – BASE SHEAR	111
8.12.2 TIME – TOP DISPLACEMENT	112
8.12.3 TIME – BASE MOMENT WALL (1) RELATIONS	114
8.12.4 TIME – BASE MOMENT WALL (2) RELATIONS	116
8.12.5 BASE SHEAR – TOP DISPLACEMENT RELATIONS	118
8.13 BASE MOMENT VALUES AND MOMENT DISTRIBUTION	119
8.14 FAILURE PEAK GROUND ACCELERATION (PGA) ANALYSIS	120
8.14.1 Methodology	120

CHAPTER (9): SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	122
9.1 SUMMARY	122
9.2 CONCLUSIONS	122
9.3 FUTURE RESEARCH WORK	123
REFERENCES	125
APPENDIX (A)	128

LIST OF TABLES

Table	Title	Page
Table (3.1)	Test Parameters and Dimensions of Specimens	19
Table (3.2)	Plastic Hinge Formation Mechanism for Specimen SWB10X20	25
Table (3.3)	Plastic Hinge Formation Mechanism for Specimen SWB10X30	27
Table (3.4)	Plastic Hinge Formation Mechanism for Specimen SWB10X40	28
Table (3.5)	Plastic Hinge Formation Mechanism for Specimen SWB10X50	29
Table (3.6)	Plastic Hinge Formation Mechanism for Specimen SWB10X60	30
Table (4.1)	Concrete Mix Design for each specimen	35
Table (4.2)	Compression Strength Results of the Specimens	41
Table (4.3)	Results of Steel Bars Characteristics	41
Table (6.1)	Area under P - △ Curve	80
Table (6.2)	Displacement Ductility Factor for Specimens	81
Table (7.1)	Comparison between Experimental and ELS Results	85

Table (8.1)	Values of lateral displacement and base moment in shear walls	91
Table (8.2)	Comparison between overturning moment and drift values for scaled model using SAP2000 and ELS	101
Table (8.3)	Reduced Drift Values for the 1/5 Scaled Model	105
Table (8.4)	Natural Period (T) Values	108
Table (8.5)	Beam Dimensions and Reinforcement Details	111
Table (8.6)	Failure Peak Ground Acceleration	120

LIST OF FIGURES

Figure	Title	Page
Figure (1-1)	Shear Wall Structure with Outriggers and Basement Fin Extensions on Piled Raft Foundation	1
Figure (1-2)	Concrete Core structure with outriggers	2
Figure (1-3)	Reinforced Concrete Prototype Building	3
Figure (2-1)	Failure Modes in Cantilever Walls	6
Figure (2-2)	The Effect of Outriggers on Core Moment	11
Figure (2-3)	Plan of Model	12
Figure (2-4)	Core-Supported Outrigger Structures	13
Figure (2-5)	Location of Outrigger in Frame	13
Figure (2-6)	Diagonals Acting as Outriggers	14
Figure (2-7)	Plan View of the Model	15
Figure (2-8)	3D View of 30 Storey Building	15
Figure (3-1)	Five Framed Shear Walls Concrete Dimensions	18
Figure (3-2)	Specimen Setup	20
Figure (3-3)	LVDT and Strain Gauge Positions	20
Figure (3-4)	SWB 10X20 Studied X-sections	22

Figure (4-1)	Wooden form of frame SWB10X20	31
Figure (4-2)	Steel bars arrangement of Specimen SWB10X20	32
Figure (4-3)	Steel bars arrangement of Specimen SWB10X30	32
Figure (4-4)	Steel bars arrangement of Specimen SWB10X40	32
Figure (4-5)	Steel bars arrangement of Specimen SWB10X50	33
Figure (4-6)	Steel bars arrangement of Specimen SWB10X60	33
Figure (4-7)	Reinforcement Details for all Specimens	34
Figure (4-8)	Wooden Form of Specimen SWB10X20	36
Figure (4-9)	Pouring of Specimen SWB10X20	36
Figure (4-10)	Smoothing Process of Specimen SWB10X20 Surface	36
Figure (4-11)	Wooden Form of Specimen SWB10X30	37
Figure (4-12)	Pouring of Specimen SWB10X30	37
Figure (4-13)	Smoothing Process of Specimen SWB10X30 Surface	37
Figure (4-14)	Wooden Form of Specimen SWB10X40	38
Figure (4-15)	Pouring of Specimen SWB10X40	38
Figure (4-16)	Smoothing Process of Specimen SWB10X40 Surface	38
Figure (4-17)	Wooden Form of Specimen SWB10X50	39

Figure (4-18)	Pouring of Specimen SWB10X50	39
Figure (4-19)	Smoothing Process of Specimen SWB10X50 Surface	39
Figure (4-20)	Wooden Form of Specimen SWB10X60	40
Figure (4-21)	Pouring of Specimen SWB10X60	40
Figure (4-22)	Smoothing Process of Specimen SWB10X60 Surface	40
Figure (4-23)	Steel Strain Gauges on Specimen Reinforcement attached to tension sides	42
Figure (4-24)	Lifting Process of Specimen SWB10X20	42
Figure (4-25)	Measuring Devices for Specimen	43
Figure (5-1)	SWB 10X20 Test Setup - Side (A)	45
Figure (5-2)	Side (A) SWB 10X20 Cracks Propagation and Failure Zones	47
Figure (5-3)	Side (B) SWB 10X20 Cracks Propagation	47
Figure (5-4)	Horizontal Load – Top Drift Relationship for SWB 10X20	48
Figure (5-5)	Horizontal Load – Vertical Concrete Strain Relationship for Wall (1)	48
Figure (5-6)	Horizontal Load – Vertical Concrete Strain Relationship for Wall (2)	49
Figure (5-7)	Horizontal Load – vertical Reinforcement Strain Relationship for Wall (1)	49
Figure (5-8)	Horizontal Load – vertical Reinforcement Strain Relationship for Wall (2)	50
Figure (5-9)	Horizontal Load – Top Reinforcement Strain Relationship for Connecting Beam	50

Figure (5-10)	SWB 10X30 Test Setup - Side (A)	51
Figure (5-11)	SWB 10X30 Side (A) Cracks Propagation and Failure Zones	53
Figure (5-12)	SWB 10X30 Side (B) Cracks Propagation	53
Figure (5-13)	Failure in Beam at Connection with Walls-Side (A)	54
Figure (5-14)	Wall (1) Connection with Base for both Sides (A) and (B)	54
Figure (5-15)	Wall (2) Connection with Base for both Sides (A) and (B)	55
Figure (5-16)	Buckling of Reinforcement of Wall (2) at Base and Crushing of Concrete	55
Figure (5-17)	Horizontal Load – Top Drift Relationship for SWB 10X30	56
Figure (5-18)	Load – Vertical Concrete Strain Relationship for Wall (1)	56
Figure (5-19)	Load – Vertical Concrete Strain Relationship for Wall (2)	57
Figure (5-20)	Load – Vertical Reinforcement Strain Relationship for Wall (1)	57
Figure (5-21)	Load – Vertical Reinforcement Strain Relationship for Wall (2)	58
Figure (5-22)	Horizontal Load –Bottom Reinforcement Strain Relationship for connecting Beam	58
Figure (5-23)	Horizontal Load –Top Reinforcement Strain Relationship for connecting Beam	59
Figure (5-24)	SWB 10X40 Test Setup of Specimen - Side (A)	60
Figure (5-25)	Face (A) Cracks Propagation and Failure Zones	61
Figure (5-26)	Face (B) Cracks Propagation	62

Figure (5-27)	Horizontal Load – Top Drift Relationship for SWB10X40	62
Figure (5-28)	Horizontal Load – Concrete Strain (1) Relationship for Wall (1)	63
Figure (5-29)	Horizontal Load – Concrete Strain (2) Relationship for Wall (2)	63
Figure (5-30)	Load – Vertical Reinforcement Strain Relationship for Wall (1)	64
Figure (5-31)	Load – Vertical Reinforcement Strain Relationship for Wall (2)	64
Figure (5-32)	Horizontal Load –Bottom Reinforcement Strain Relationship for connecting Beam	65
Figure (5-33)	Horizontal Load –Top Reinforcement Strain Relationship for connecting Beam	65
Figure (5-34)	SWB 10X50 Test Setup of Specimen - Side (A)	66
Figure (5-35)	SWB 10X50 Face (A) Cracks Propagation	67
Figure (5-36)	SWB 10X50 Face (B) Cracks Propagation	68
Figure (5-37)	Horizontal Load – Top Drift Relationship for SWB10X50	68
Figure (5-38)	Horizontal Load – Concrete Strain (1) Relationship for Wall (1)	69
Figure (5-39)	Load – Vertical Reinforcement Strain Relationship for Wall (1)	69
Figure (5-40)	Load – Vertical Reinforcement Strain Relationship for Wall (2)	70
Figure (5-41)	Horizontal Load –Bottom Reinforcement Strain Relationship for connecting Beam	70
Figure (5-42)	Horizontal Load –Top Reinforcement Strain Relationship for connecting Beam	71
Figure (5-43)	SWB 10X60 Test Setup of Specimen - Side (A)	71

Figure (5-44)	SWB 10X60 Face (A) Cracks Propagation and Failure Zones	73
Figure (5-45)	SWB 10X60 Face (B) Cracks Propagation	73
Figure (5-46)	Horizontal Load – Top Drift Relationship for SWB10X60	74
Figure (5-47)	Horizontal Load – Vertical Concrete Strain (1) Relationship for SWB10X60	74
Figure (5-48)	Horizontal Load – Vertical Concrete Strain (2) Relationship for SWB10X60	75
Figure (5-49)	Horizontal Load – Reinforcement Steel Strain (1) Relationship	75
Figure (5-50)	Horizontal Load – Reinforcement Steel Strain (6) Relationship	76
Figure (5-51)	Horizontal Load – Bottom Reinforcement Relationship for connecting Beam	76
Figure (5-52)	Horizontal Load – Bottom Reinforcement Relationship for connecting Beam	77
Figure (6-1)	Horizontal Load – Top Drift Relationship for all Specimens	78
Figure (6-2)	Increase in Lateral Load Capacity	79
Figure (6-3)	Decrease in Top Drift	79
Figure (6-4)	Increase in Energy Dissipation	80
Figure (6-5)	Yield and Failure Displacements Determination	81
Figure (7-1)	ELS 1/5 Scaled Model	82
Figure (7-2)	Horizontal Load – Top Drift Relation for SWB10X20	83
Figure (7-3)	Horizontal Load – Top Drift Relation for SWB10X30	83