

Ain Shams University
Faculty of Medicine
Department of Anesthesiology,
Intensive Care and Pain Management

# A Clinical Comparative Study between Bupivacaine and Midazolam Versus Bupivacaine plain in Brachial plexus block by Supraclavicular approach in Upper Limb Surgeries

#### Thesis

Submitted for partial fulfillment of Master Degree
In Anesthesia

#### By Israa Ihab Abdel Aziz

M.B.B.CH., M.Sc., Ain Shams University

#### Supervised by

# Prof. Dr. Galal Adel Abdel Reheem El-Kadi

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

## **Assist. Prof. Dr. Randa Aly Shoukry**

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

#### Dr. Rehab Abdel Fattah Abdel Razik

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018



سورة البقرة الآية: ٣٢

# Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful. I can do nothing without Him.

I would like to express my sincere gratitude to **Prof. Dr. Galal Adel Abdel Reheem El-Kadi,** Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his encouragement, support and kindness which enable me to produce good valuable work. I really have the honor to complete this work under his supervision.

Special thanks and appreciation to **Assist. Prof. Dr. Randa Aly Shoukry,** Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine – Ain Shams University, for her active guidance and keen supervision which were of great help throughout this work.

I can't forget to thank with all appreciation **Dr. Rehab Abdel Fattah Abdel Razik,** Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for the efforts and time she has devoted to accomplish this work.

I am sincerely grateful to my Family, specially my **Parents** for their care, support and encouragement.

🖎 Israa Ihab Abdel Aziz

# **List of Contents**

| Subject                               | Page No. |
|---------------------------------------|----------|
| List of Abbreviations                 | i        |
| List of Tables                        | i        |
| List of Figures                       | v        |
| Introduction                          | 1        |
| Aim of the Work                       | 3        |
| Review of Literature                  |          |
| Anatomy of the Brachial Plexus        | 4        |
| Supraclavicular Brachial Plexus Block | 20       |
| The Pharmacology of the Study Drugs   | 29       |
| Patients and Methods                  | 53       |
| Results                               | 63       |
| Discussion                            | 79       |
| Conclusion                            | 88       |
| Summary                               | 89       |
| References                            | 92       |
| Arabic Summary                        |          |

#### **List of Abbreviations**

# Abbrev. Full-term

**ANOVA** : Analysis of variance

**AXI** : Axillary nerve

**BP** : Brachial plexus

**BP** : Brachial plexus

**CNS** : Central nervous system

**DBP** : Diastolic blood pressure

**DC**: Direct current

**GABA** : Gamma amino butyric acid

**HR** : Heart rate

**Hz** : Hertz

LAs : Local anesthetics

MC : Musculocutaneous nerve

**MEAV** : Minimum effective anesthetic volume

**MED** : Median nerve

**MSM** : Middle scalene muscle

**NSAIDs** : Non-steroidal anti-inflammatory drugs

PCA : Patient-controlled analgesia

**PNB** : Peripheral nerve blockade

**PNS** : Peripheral nerve stimulation

**RAD** : Radial nerve

**SA** : Subclavian artery

**SBP** : Systolic blood pressure

**SD** : Standard deviation

**ULN** : Ulnar nerve

**US** : Ultrasound

# **List of Tables**

| Table No          | o. Title                                                                                                                 | Page No.                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|
| <b>Table (1):</b> | Sex variation, body weight differences in control and study gr                                                           | _                         |
| <b>Table (2):</b> | Comparison of duration of surgery, and duration of sensory block and and duration of motor block between and study group | onset time<br>een control |
| <b>Table (3):</b> | Comparison of the duration of arthe block between the study group                                                        | U                         |
| <b>Table (4):</b> | Comparison of the sedation score the study groups                                                                        |                           |
| <b>Table (5):</b> | Comparison of the num postoperative doses of pethidir study groups                                                       | ne in the                 |

# **List of Figures**

| Figure N            | Lo. Title Page No.                                                                                                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------|
| Figure (1):         | Brachial plexus with terminal branches labeled                                                                       |
| Figure (2):         | Typical cervical vertebra6                                                                                           |
| Figure (3):         | Basic relationships of the brachial plexus to the axillary artery, which is a continuation of the subclavian artery7 |
| Figure (4):         | Distribution of the musculocutaneous nerve                                                                           |
| Figure (5):         | Distribution of the ulnar nerve10                                                                                    |
| Figure (6):         | Distribution of the median nerve11                                                                                   |
| Figure (7):         | Distribution of axillary and radial nerves 12                                                                        |
| Figure (8):         | Anatomical relations of the brachial plexus 17                                                                       |
| Figure (9):         | Supraclavicular brachial plexus (BP) view by US                                                                      |
| <b>Figure (10):</b> | Application of the US probe and needle insertion                                                                     |
| Figure (11):        | The entry point in conventional supraclavicular nerve block                                                          |
| <b>Figure (12):</b> | Entry point of nerve stimulator needle in supraclavicular nerve block                                                |
| <b>Figure (13):</b> | Chemical structure of bupivacaine Hcl molecule                                                                       |
| Figure (14):        | Structural formulas of midazolam and two commonly used benzodiazepines, diazepam and lorazepam                       |

|                     | Mechanisms and sites of action of benzodiazepines. Reprinted from Richter JJ: Current theories about the mechanisms of benzodiazepines and neuroleptic drugs 42 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Metabolic pathway of midazolam in humans46                                                                                                                      |
| <b>Figure (17):</b> | Dermatomal innervation of the upper limb 58                                                                                                                     |
| <b>Figure (18):</b> | Sex variation in control and study group 64                                                                                                                     |
|                     | Age differences between the control and study group                                                                                                             |
|                     | Display of body weight differences between the control and study group                                                                                          |
|                     | Comparison between the study groups as regards duration of surgery                                                                                              |
| _                   | Comparison of the onset of time for sensory between the study groups                                                                                            |
|                     | Comparison of the duration of sensory block between the study groups69                                                                                          |
| _                   | Comparison of the onset time for motor block in the study groups69                                                                                              |
| _                   | Comparison of the duration of motor block in the study groups70                                                                                                 |
|                     | Comparison of duration of analgesia of the block in the study groups71                                                                                          |
| _                   | Comparison of VAS between two blocks in the study groups                                                                                                        |

| <b>Figure (28):</b> | Comparison between the use of 1st dose<br>Pethidine as postoperative analgesia<br>requirements in control and midazolam<br>group | . 74 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|------|
| <b>3</b>            | Comparison between the use of 2nd dose<br>Pethidine as postoperative analgesia<br>requirements in control and midazolam<br>group | . 75 |
| <b>Figure (30):</b> | Comparison between systolic blood pressure readings of the two blocks in the study                                               | . 76 |
| <b>Figure (31):</b> | Comparison between diastolic blood pressure readings of the two blocks in the study.                                             | . 76 |
| <b>Figure (32):</b> | Comparison between heart rate readings of the two blocks in the study                                                            | . 77 |
| <b>Figure (33):</b> | Adverse effects and complications in both study groups                                                                           | . 78 |

#### Introduction

rachial plexus block is an excellent method for attaining optimal operating conditions for upper limb surgeries by producing complete muscular relaxation, maintaining haemodynamic stability and the associated sympathetic block. They also provide extended postoperative analgesia with minimal side effects. In addition, it offers a better preservation of mental functions in elderly; decreased risk of aspiration due to intact pharyngeal and laryngeal reflexes; difficult intubation: avoids decreases postoperative complications associated with intubation and provides better postoperative analgesia without undue sedation facilitating early mobilization and discharge (Chandni et al., 2013).

Bupivacaine is used frequently for supraclavicular nerve block as it has long duration of action from 3 to 6 hours. Adjuncts to local anesthetics for brachial plexus block may enhance the quality and duration of analgesia (*Laiq et al.*, 2008).

Many adjuvants have been used including opioids such as morphine, fentanyl, tramadol, buprenorphine, sufentanil and calcium channel blockers such as verapamil and alpha-agonists such as clonidine (*Sarma et al.*, 2015).

Midazolam, a water soluble benzodiazepine is known to produce antinoociception and to enhance the effect of local anaesthetic when given epidurally or intrathecally.

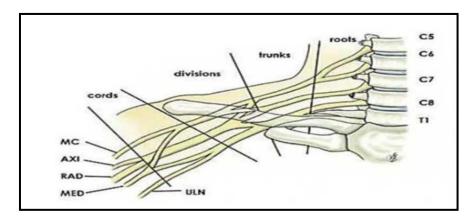
Midazolam produces this effect by its action on Gamma Amino Butyric Acid-A (GABA-A) receptors. GABA receptors have also been found in peripheral nerves (*Kumar et al.*, 2016).

Amongst various approaches to brachial plexus block, supraclavicular approach is the most commonly performed and most reliable method for surgeries below the shoulder joint. Potential complications include pneumothorax (1-6%), haemothorax, Homer's syndrome and phrenic nerve block (*Pathak et al.*, 2012).

# **Aim of the Work**

The aim of this work is to determine the onset time, duration and analgesic efficacy of midazolam-bupivacaine combination compared to plain bupivacaine (0.5%) for brachial plexus block.

## **Anatomy of the Brachial Plexus**


nowledge of formation of brachial plexus and its ultimate cutaneous and muscular distribution is absolutely essential to the intelligent and effective use of brachial plexus anaesthesia for upper limb surgeries. Close familiarity with the vascular, muscular and fascial relationships of the plexus is equally essential to the mastery of various techniques, for it is these perineural structures which serve as the landmark by which needle may accurately locate the plexus percutaneously. In its course from intervertebral foramina to the upper arm, the fibres are composed consecutively of roots, trunks, divisions, cords and terminal nerves.

Brachial plexus is a complex network of nerves supplying the whole upper limb, including its motor and sensory supply, arising from the neck and passing through the axilla to the upper limb. It is composed of 5 roots, 3 trunks, 6 divisions, 3 cords, and terminal branches (**Figure 1**) (*Andres and Sala*, 2001).

#### 1-Roots:

The ventral rami of spinal nerves from C5 to T1 are referred to as the roots of the brachial plexus. The typical spinal nerve root results from the union of the ventral nerve

rootlets originating in the anterior horn cells of the spinal cord and the dorsal nerve rootlets (*Andres and Sala*, 2001).



**Figure (1):** Brachial plexus with terminal branches labeled: MC is musculocutaneous nerve, AXI is axillary nerve, RAD is radial nerve, MED is median nerve, and ULN is ulnar nerve (*Andres & Sala, 2001*).

The roots then get exit through the transverse processes of the cervical vertebrae just posterior to the vertebral artery, which runs in a cephalic direction through the transverse foraminae. Each transverse process consists of a posterior and anterior tubercle, which meet laterally to form the costotransverse bar (**Figure 2**). The transverse foramen lies medial to the costotransverse bar and between the posterior and anterior tubercles. The spinal nerves that form the brachial plexus run in an inferior and anterior direction within the sulci which is formed by these structures (*Gloss et al.*, 2006).