Outcome of Lupus Nephritis in Children

Thesis

Submitted for partial fulfillment of the Master degree in Pediatrics

By **Yasmeen Mohammed Mahmoud Selim**B.Sc. of Medicine, Cairo University

Supervised by **Prof. Dr. Samia Salah El-Deen Mahmoud**

Professor of Pediatrics
Faculty of Medicine, Cairo University

Dr. Huda Marzouk Mohammed

Lecturer of Pediatrics
Faculty of Medicine, Cairo University

Dr. Hanan Abd EL-Aziz Ahmed

Lecturer of Pediatrics
Faculty of Medicine, Cairo University

Pediatric Department
Faculty of Medicine, Cairo University
2015

Acknowledgment

First and foremost thanks to "Allah", the most kind and the most merciful. I wish to express my sincere gratitude and utmost thanks to prof. *Dr. Samia Salah EL-Deen Mahmoud*, professor of Pediatrics, Faculty of Medicine, Cairo University, for her continuous encouragement, valuable advice and kind supervision.

I am also sincerely thankful to *Dr. Huda Marzouk*, Lecturer of pediatrics at the rheumatology clinic and also to *Dr. Hanan Abd EL-Aziz*, Lecturer of pediatrics at the nephrology unit, for their continuous supervision and meticulous revision of this work.

I would like also to thank all the staff members of the pediatric rheumatology clinic for their great help in conducting this work.

Deep appreciation to my great parents for their outstanding help and support offered throughout conducting this work.

List of contents

List of tables	I
List of figures	III
List of abbreviations	IV
Introduction & aim of work	1
Review of literature	
Chapter 1: Systemic lupus erythematosus	3
Chapter 2: Lupus nephritis	20
Patients and methods	60
Results	66
Discussion	84
Summary	93
Conclusion and Recommendations	96
References	98
Arabic summary	

List of tables

Table		P	
1	Autoantibodies of SLE		
2	Summary of abnormal immune responses and immunoregulation in patients with SLE		
3	The ACR criteria for the diagnosis of SLE		
4	SLICC criteria for the classification of SLE		
5	Definitions		
6	International Society of Nephrology/Renal Pathology Society (ISN/RPS) 2003 Classification of Lupus Nephritis		
7	Active and Chronic Glomerular Lesions	33	
8	Reference Values for Protein Excretion	62	
9	K/DOQI stages of chronic kidney disease (2002)	64	
10	Demographic Data	67	
11	Demographic features in relation to GFR	68	
12	Initial presentation of SLE in the study group	68	
13	Clinical features present at the time of the study		
14	Clinical features in relation to changes in the GFR		
15	Laboratory findings		
16	Anemia and it's relation to changes in the GFR	74	
17	Number and percentage of patients' GFR according to the CKD classes	77	
18	Values of GFR before and after induction therapy	78	
19	Urinary abnormalities in relation to the GFR	78	
20	Response criteria for urinary protein value	80	
21	Patients classified according to the response criteria for urinary protein value	80	

22	Patients' number and percentage according to the used		
	immunosuppressive drugs		
23	Doses of used immunosuppressive drugs	82	
24	Relation of doses of immunosuppressive drugs to improvement or worsening of the GFR	83	

List of figures

Figure		P
1	Histopathology of Lupus Nephritis	
2	Treatment algorithm for proliferative lupus nephritis (Class III	
	and Class IV)	
3	Sex distribution of the study group	66
4	Initial presentation of SLE in the study group	69
5	Albumin/Creatinine ratio findings in the study group	73
6	Hemolytic anemia in relation to changes in the GFR	74
7	Frequency of the renal biopsy classes among the study group	76
8	Number and percentage of patients' GFR according to the	77
	CKD classes	

List of abbreviations

Ab: Antibody

ACEI: Angiotensin converting enzyme inhibitors

ACR: American College of Rheumatology

aCL: Anticardiolipin antibodies

AI: Activity index

ALMS: Aspreva Lupus Management Study

ANA: Antinuclear antibody

Anti-ds DNA: Antidouble stranded DNA antibody.

Anti-sm: Anti-smith

APS: Antiphospholipid syndrome

aPL: Antiphospholipid antibodies

aPTT: Activated partial thromboplastin time

ARB: Angiotensin receptor blockers

AZA: Azathiopurine

BSA: Body surface area

BUN: Blood urea nitrogen

C: Complement

CD: Cluster determinant

CKD: Chronic kidney disease

CNS: Central nervous system

CYC: Cyclophosphamide

DPGN: Diffuse proliferative glomerulonephritis

Ds-DNA: Double stranded Deoxyribonucleic acid

ELISA: enzyme-linked immunosorbent assay

EM: Electron microscopy ESRD: End stage renal disease FPGN: Focal proliferative glomerulonephritis **GFR**: Glomerular filtration rate **GWAS:** Genome wide-association studies **HCQ**: Hydroxychloroquine **HLA**: Human leukocyte antigen **HPF**: High power field **IC**: Immune complex IF: Immunofluorescence **IFN**: Interferon Ig: Immunoglobulin IL: Interleukin IMPDH: Inhibitor of inosine-5-monophosphate dehydrogenase IV: Intravenous **IVIG:** Intravenous immunoglobulin JSLE: Juvenile-Systemic lupus erythematosus **KCT**: Kaolin clotting time **KDIGO: Kidney Disease Improving Global Outcomes** LAC: Lupus anticoagulant LN: Lupus nephritis LM: Light microscopy 6-MP: 6-mercaptopurine MHC: Major histocompatibility complex MCTD: Mixed connective tissue disease

mAb: Monoclonal antibody

MMF : Mycophenolate mofetil

MTX: Methorexate

NK: Natural killer

NIH: National institute of health

NSAID: Non steroidal anti-inflammatory drugs

RBC'S: Red blood corpuscles

RNP: Ribonucleoprotein

RPS: Renal Pathology Society

RTX: Rituximab

SD: Standard deviation

SELENA: Safety of Estrogens in Lupus Erythematosus National Assessment

SLE: Systemic lupus erythematosus

SLE-DAI: Systemic lupus erythematosus disease activity index

SLICC-DI: The Systemic Lupus International Collaborating Clinics Damage

Index

TH: T-helper

TNF- α : Tumor necrosis factor alpha

TPMT: Thiopurine methyltransferase

 ${\bf TTP: Thrombotic\ thrombocytopenic\ purpura}$

WBC'S: White blood corpuscles

 $WHO: World\ health\ organization$

UVA: Ultraviolet A light

UVB: Ultraviolet B light

Abstract

Background: Lupus nephritis is one of the main clinical presentations determining

the course and outcome of systemic lupus erythematosus in children. The aim of

our study is to determine the outcome of lupus nephritis and the risk factors

affecting it in children.

Objective: To determine the outcome of lupus nephritis in children and the

different risk factors affecting it.

Methods: This study is a retrospective study of 50 patients with lupus nephritis

following in the rheumatology clinic at Cairo University children hospital and

described their different clinical, laboratory and pathological presentation, to

investigate the clinicopathological correlation, medications received and renal

outcome.

Results: The majorities of our patients were class IV lupus nephritis (44%) and

were CKD stage I (46%). 2% of our patients died. 8% were subjected to

temporary hemodialysis and no patient ended as ESRD on regular hemodialysis.

Proteinuria and hematuria were associated with worsening of GFR. The method of

induction wasn't found to affect the outcome, however the Mycophenolate mofetil

and Azathioprine doses tend to be higher in the group with improved GFR.

Conclusion: Urinary abnormalities may precede decline in GFR. Proteinuria and

hemolytic anemia could contribute to non-improvement or worsening of the GFR.

Patients having a higher risk of poor renal outcome need more close observation

and aggressive therapy.

Key words: Lupus nephritis, Renal outcome, Children.

Introduction

SLE is an autoimmune disease with various clinical manifestations. About 10–15% of all SLE patients are diagnosed in childhood at less than 16 years of age. LN is one of the main clinical presentations determining the course and outcome in patients with SLE. Nephritis complicates SLE in approximately 25-50% of patients and is associated with increased mortality (**Oktadianto et al., 2014**).

The SLE manifestation of overt nephropathy is more common in children than adults. Patients with severe histological forms of nephritis have more severe renal manifestations. Although several studies have reported on factors affecting outcomes, the results remain unclear. Possible prognostic factors are male gender, black race, onset before puberty, persistent hypertension, hypertensive crisis, impaired renal function, nephrotic syndrome, anemia and class IV nephritis (Oktadianto et al., 2014).

Although the prognosis of LN has improved in recent decades, varying degrees of chronic renal impairment, including ESRD, can still develop. Thus, children with LN require early and adequate treatment to protect the kidneys from developing chronic damage. However, determining the optimal balance between potential benefits and adverse side effects of the drugs is always a difficult process in the management of pediatric LN and there is still no consensus on the best treatment model (**Demircin**, **2013**).

Aim of work

To determine the outcome of lupus nephritis in children and the various risk factors affecting it and to investigate the clinicopathological correlation and the medications received.

Systemic lupus erythematosus

Definition

Systemic lupus erythematosus (SLE) is an autoimmune disease in which organs, tissues and cells undergo damage mediated by tissue-binding autoantibodies and immune complexes (*Hahn a*, 2005).

Epidemiology

The best estimate is that SLE affects between 5000 and 10,000 children in the United States (*Pineles et al.*, 2011).

Juvenile-SLE (JSLE) affects girls more often than boys (8:1), even in the prepubescent age group (4:1). SLE can occur at any age, although it becomes more frequent after five years of age and is increasingly prevalent after the first decade of life (*Lehman et al.*, 1989).

In retrospective reviews from France, Canada, and the United Kingdom, the median age of onset of JSLE was 12 to 13 years, with the disease developing in the majority of patients after eight years of age (*Watson et al.*, 2012).

1- Geographic and Racial Distribution

Both geography and race affect the prevalence of SLE, clinical and laboratory manifestations and the disease appears to be more common in urban than rural areas (*Chakravarty et al.*, 2007).

The prevalence of SLE is higher among Asians, Afro-Americans, Afro-Caribbeans and Hispanic Americans compared with Americans of European decent in the United States, and among Asian Indians compared with Caucasians in Great Britain (*Hochberg*, 1985).

2- Gender Distribution

The increased frequency of SLE among women has been attributed in part to an estrogen hormonal effect (*Costenbader et al.*, 2007).

Men with lupus tend to have higher frequencies of renal disease, skin manifestations, cytopenias, serositis, neurologic involvement, thrombosis, cardiovascular disease, hypertension and vasculitis than women. In contrast, Raynaud phenomenon, photosensitivity and mucosal ulceration are less frequent manifestations in men than women. Most, but not all studies suggest that men have a higher one-year mortality rate (*Lu et al.*, 2010).