Predictive Factors for Symptomatic Osteonecrosis in Patients with Systemic Lupus Erythematosus

Thesis

Submitted for Partial Fulfillment of the Master Degree in Rheumatology

Presented by Madonna Halim Gad El-Sayed (M.B.B.S.)

Under supervision of

Prof. Dr. Eman Ahmed Hafez

Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Dr. Sherin Mohamed Hosny

Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Dr. Nermeen Samy Khalil

Lecturer of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Acknowledgment

First and foremost, I feel always indebted to GOD, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Eman Ahmed Hafez**, Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Sherin Mohamed Hosny**, Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mermeen Samy Khalil**, Lecturer of Internal Medicine and Rheumatology Faculty of Medicine – Ain Shams University, for her great help, active participation and guidance.

Madonna Halim Gad El-Sayed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Aim of the Study	3
Review of Literature	
Systemic Lupus Erythematosus	4
Avascular Necrosis	68
Patients and Methods	98
Results	105
Discussion	135
Summary and Conclusion	148
Recommendations	151
References	
Arabic Summary	

List of Tables

Table No.	Title Page No	
Table (1):	ACR classification of neuropsychiatric syndromes in SLE.	. 22
Table (2):	2012 SLICC classification criteria for SLE	
Table (3):	New EULAR/ACR SLE classification criteria	
, ,	2017	34
Table (4):	International Society of Nephrology/Renal	
, ,	Pathology Society (ISN/RPS) 2003	
	Classification of Lupus Nephritis	38
Table (5):	Antibodies that may be found in SLE	
Table (6):	The SLEDAI score	
Table (7):	Activity index in renal biopsy of lupus	
- (1)	nephritis	
Table (8):	Chronicity index in renal biopsy of lupus	
, ,	nephritis	46
Table (9):	SLICC/ACR damage index for SLE	
Table (10):	Risk factors for avascular necrosis of the	
	femoral head	
Table (11):	Diagnostic criteria for osteonecrosis	
Table (12):	Ficat classification of MRI stages of ONFH	
Table (13):	Different radiological staging classifications	
Table (14):	Indications and contraindications of surgery	
Table (15):	Demographic data among our 60 SLE	
, ,	patients.	
Table (16):	Clinical manifestations of our 60 SLE	
, ,	patients.	106
Table (17):	Associated comorbidities (hypertension and	
	diabetes) among our 60 SLE patients	107
Table (18):	Descriptive data regarding steroid intake	
	among the 60 SLE patients.	107
Table (19):	Other drugs intake among our 60 SLE	
	patients.	108
Table (20):	SLEDAI score of disease activity among our	
	60 SLE patients.	108

List of Cables Cont...

Table No.	Title	Page No.
Table (21):	SLICC/ACR damage index of the patients.	
Table (22):	Descriptive data of the laboratory among the 60 SLE patients	findings
Table (23):	MRI stages of osteonecrosis among (30 SLE patients with ON)	
Table (24):	T-score of DEXA scan among group I patients with ON)	
Table (25):	Comparison between SLE patients without ONFH regarding some demogra	aphic data111
Table (26):	Comparison between SLE patients without ONFH regarding some manifestations	clinical
Table (27):	Comparison between SLE patients without ONFH regarding as comorbidities (HTN and DM)	with and ssociated
Table (28):	Comparison between SLE patients without ONH regarding steroid intak	with and
Table (29):	Comparison between SLE patients without ONFH regarding other drugs	with and
Table (30):	Comparison between both groups the SLEDAI score for disease activity	regading
Table (31):	Comparison between SLE patients without ONFH regarding SLICC/ACF index.	with and R damage
Table (32):	Comparison between SLE patients without ONFH regarding laboratory	with and
Table (33):	Relation between stages of osteone MRI (assessed by Ficat classification t-score of bone densiometry in the patients with ONFH (group I)	crosis in) and the 30 SLE
Table (34):	Logistic regression analysis for pred	lictors of

List of Figures

Fig. No.	Title Page	No.
Figure (1):	SLE pathogenesis	6
Figure (2):	Pathogenesis of SLE	7
Figure (3):	Malar rash	
Figure (4):	Livedo reticularis	13
Figure (5):	Subacute cutaneous lupus erythematosus	15
Figure (6):	Discoid rash	
Figure (7):	Lupus profundus	
Figure (8):	Patient with Jaccoud's arthropathy and his	
	X-Rays images	19
Figure (9):	The plain radiograph of both hands shows	
	joint space narrowing at the 2nd to 5th	
	proximal interphalangeal joints, marginal	
	erosion	19
Figure (10):	Recommendations for Induction of	
G	Improvement in Patients With ISN Class	
	III/IV Lupus Glomerulonephritis	66
Figure (11):	Recommendations for Induction of	
G	Improvement in Patients With Class V	
	"Pure Membranous	66
Figure (12):	Pragmatic approaches to therapy for	
	systemic lupus erythematosus	67
Figure (13):	The histological findings of an established	
	ANFH	72
Figure (14):	The three more severe stages of the Ficat	
G	classification system as seen in plain X-	
	rays	76
Figure (15):	a-c Radiographs show the case of a 48-year-	
_	old male patient who had osteonecrosis of	
	both femoral heads	91

List of Figures Cont...

Fig. No.	Title	Page 1	No.
Figure (16):	(A) Hip resurfacing; inclination component-lateral cortex ratio, resurfacing; stem shaft angle	(B)Hip	99
Figure (17):	Algorithm for the managemen treatment of patients with osteon	t and ecrosis	
Figure (18):	of the femoral head Comparison SLE patients with (grand without ONFH (group II) as	roup I) regard	
Figure (19):	demographic data. Comparison between SLE patient (group I) and without ONFH (group I)	s with oup II)	
Figure (20):	regarding some clinical manifestati Comparison between SLE patient (group I) and without ONFH (group	s with	114
Figure (21):	regard hypertension and diabetes Comparison between SLE patient (group I) and without ONFH (group regard previous dose of steroid, or	s with p II) as	116
Figure (22):	dose and cumulative steroid dose Comparison between SLE patient (group I) and without ONFH (group	s with	
Figure (23):	regard pulse steroid intake (gm) Comparison between SLE patient (group I) and without ONFH (group regard duration of steroid intake	s with p II) as	
Figure (24):	Comparison between SLE patient and without ONFH as regard Siscore.	s with LEDAI	120
Figure (25):	Comparison between SLE patient (group I) and without ONFH (group regard SLICC/ACR damage index	s with p II) as	

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (26):	Comparison between SLE patients		
	(group I) and without ONFH (group		109
Figure (97).	regard laboratory data		123
Figure (27):	Comparison between SLE patients (group I) and without ONFH (group		
	regard complete urine analysis		123
Figure (28):	Comparison between SLE patients		120
Figure (20).	(group I) and without ONFH (group		
	regard ALT		124
Figure (29):	Comparison between SLE patients		121
119410 (20).	(group I) and without ONFH (group		
	regard AST.	11) 40	124
Figure (30):	Comparison between SLE patients	with	
g = (= 1)	(group I) and without ONFH (group		
	regard serum creatinine.		125
Figure (31):	Comparison between SLE patients		
	(group I) and without ONFH (group		
	regard total urinary protein in 24 ho	urs	125
Figure (32):	ROC for age, age of disease onset,		
	previous steroid dose, duration of st	eroids	
	intake and cumulative dose of stero	ids in	
	prediction of ONFH in SLE patients	•	130
Figure (33):	ROC for WBCs, cholesterol, triglyre	raide,	
	C4, C3 and total urinary prote	in in	
	prediction of ONFH in SLE patients		132
Figure (34):	ROC for SLICC/ACR DI and SLEI		
	prediction of ONFH in SLE patients	•	134

List of Abbreviations

Full term Abb. ACLE Acute cutaneous lupus erythematosus AIHAAutoimmune haemolytic anaemia ANA Antinuclear antibodies anti-dsDNA Anti-double-stranded DNA APCs Antigen presenting cells APLAntiphospholipid antibodies APS......Antiphospholipid syndrome ARCO...... Association Research Circulation Osseous AUC Area under curve AVN Avascular necrosis AZA...... Azathioprine BA Biologic agents BLys.....B lymphocyte stimulator BMD.....Bone mineral density Bps..... Bisphosphonates CBC...... Complete blood count CBCAPs...... Cell bound complement activation products CCLE Chronic cutaneous lupus erythematosus CD...... Core decompression CD40L..... Costimulatory protein 40 ligand CHF Congestive heart failure CHLE..... Chilblain Lupus CLE...... Cutaneous lupus erythematosus CM Cardiomyopathy c-Mpl......Cloned myeloproliferative leukemia CMV...... Cytomegalovirus COX-2.....Cyclooxygenase-2 CRP...... C-reactive protein CS Corticosteroids CsA..... Cyclosporine A CT...... Computed tomography scan CVD...... Cardiovascular disease CYC...... Cyclophosphamide

List of Abbreviations Cont...

Abb.	Full term
CVD	. Cytochrome P450
	. Cytochrome F450 . Diffuse alveolar hemorrhage
DCs	
	. Dehydroepiandrosterone
	. Discoid lupus erythematosus
	. DNA Methyltransferase 3 Alpha
	. Epstein–Barr virus
	Estimated glomerular filtration rate
	. Enzyme linked immunosorbant assay
<i>EPO</i>	
	. Extracellular signal-regulated kinases
	. Early SLICC/ACR Damage Index
	. Erythrocyte sedimentation rate
<i>FH</i>	
FHCD	. Femoral head core decompression
<i>FM</i>	. Fibromyalgia
<i>FRAX</i>	Fracture Risk Assessment Tool
<i>FVFG</i>	. Free vascularized fibular graft
GCs	$.\ Glucocorticoids$
<i>GI</i>	$.\ Gastroint estinal$
<i>GN</i>	. Glomerulonephritis
	$.\ Grape\ seed\ proanthocyanid in\ extract$
<i>HBO</i>	. Hyperbaric oxygen therapy
$IFN\alpha$. Interferon α
_	. Immunoglobulin G
	. Intestinal pseudo-obstruction
	. Inter-quartile range
<i>ISN/RPS</i>	. International Society of Nephrology/Renal
	Pathology Society
	. Jaccoud's arthropathy
	. Low-density lipoprotein
<i>LET</i>	. Lupus erythematosus tumidus

List of Abbreviations Cont...

Abb.	Full term
I KM	. Liver-kidney-mitochondrial
	. Mycophenolate mophetil
	. Mycophenotate mophetti . Magnetic resonance imaging
	. Magnette resonance unaging . Mesenchymal stem cells
NO	· ·
	Nontraumatic osteonecrosis femoral head
	. Neuropsychiatric involvement in SLE
	Negative predictive value
	Non vascularized bone graft
<i>OA</i>	e ,
	. Osteonecrosis of the femoral head
	. Protein/creatinine ratio
	Pulmonary function test
	. Physician Global Assessment
	. Positive predictive value
	. Pure red cell aplasia
	. Peripheral vascular disease
	$.\ Red\ blood\ counts$
<i>RF</i>	. Risk factors
SC	. Stem cell
SCLE	. Subacute cutaneous lupus erythematosus
<i>SLAM</i>	. Systemic Lupus Activity Measure
<i>SLE</i>	. Systemic lupus erythematosus
SLEDAI	. SLE Disease Activity Index
<i>SLS</i>	. Shrinking lung syndrome
SPECT/CT	. Single photon emission computed tomography/
	computed tomography
	. Statistical Package for Social Science
<i>TAC</i>	. Tacrolimus
	. Terminal deoxynucleotidyl transferase
	. Total hip arthroplasty
<i>THR</i>	. Total hip replacements

List of Abbreviations Cont...

Abb.	Full term	
TTP TUNEL US	Three-phase bone scintigraphy Thrombotic thrombocytopenic purpura dUTP Nick-End Labeling Ultrasonography	
<i>VBG</i>	Ultraviolet Visual analogue scale Vascularized bone graft Vascular endothelial growth factor	

Introduction

ystemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease with heterogeneous performance. It can produce a variety of autoantibodies with complement activation and immune complex deposition, leading to damage to multiple tissues and organs (Wang et al., 2016).

The disease most often affects women of childbearing period. Its onset and development are associated with genetic predisposition and environmental factors, such as exposure to ultraviolet light and certain drugs. Its most common manifestations are arthritis, fatigue and malar erythema; beyond these manifestations, some individuals may develop serious complications such as renal, neurological and cardiopulmonary dysfunction (*Marques et al.*, 2016).

Osteonecrosis (ON) is one of the most common complications of SLE, which is reported in 3–30 % lupus patients. The key mechanism of ON is destruction of the nourishing vessels of bone, which leads to osseous ischemia, degeneration, and necrosis. The most common site of ON is femoral head, while it is less common in knee & shoulder (*Zhao et al., 2016*).

Several factors have been associated with the development of ON in SLE, although corticosteroid (CS) therapy has been the most consistent association. However, a

considerable proportion of SLE patients with ON complications have no history of CS treatment, while most SLE patients who receive CS do not develop ON during the course of the disease (*Faezi et al., 2015*). Many other risk factors such as vasculitis, antiphospholipid antibodies, Raynaud's phenomenon and hyperlipidemia have been reported for ON in patients with SLE; however, no proven association factor has yet been found (*Wang et al., 2016*).

Symptomatic hip ON is a disabling condition with a poorly understood aetiology and pathogenesis. Numerous treatment options were for hip ON were described, including non-operative management and joint preserving procedures, as well as total hip replacement. Non-operative management includes drugs such as; bisphospohanates, anticoagulants, hypolidemeics, vasodilators, or other procedures such as extracorporeal shock wave treatment, pulsed electromagnetic therapy, or hyperbaric oxygen which have all shown efficacy in the reduction of pain, and improved function during early-stages of the condition (*Issa et al., 2013*).

AIM OF THE STUDY

The aim of the study is to identify the clinical and laboratory risk factors for development of Osteonecrosis in SLE patients.