

CURRENT FLOW AT THE INTERFACE OF COPPER AND POLYETHYLENE IN HIGH-VOLTAGE APPARATUS

By

Eng. Mohammed Ahmed El-Shahat Abo-Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY In Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

CURRENT FLOW AT THE INTERFACE OF COPPER AND POLYETHYLENE IN HIGH-VOLTAGE APPARATUS

By

Eng. Mohammed Ahmed El-Shahat Abo-Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY In Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Hussein I. Anis	Dr. Ahmed A. Huzayyin
•••••	•••••
Electrical Power and Machines Department	Electrical Power and Machines Departmen
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

CURRENT FLOW AT THE INTERFACE OF COPPER AND POLYETHYLENE IN HIGH-VOLTAGE APPARATUS

By

Eng. Mohammed Ahmed El-Shahat Abo-Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY In Electrical Power and Machines Engineering

Approved by the Examining Committee:	_
Prof. Dr. Hussein I. Anis	Thesis main Advisor
Prof. Dr. Hany A. Elghazaly	Internal Examiner
Prof. Dr. Mohamed A. Izzularab	- External Examiner

(Professor in Shbeen ELkoom Engineering at Monoufia University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Mohammed Ahmed El-Shahat Abo-Saleh.

Date of Birth: 01 / 10 / 1988

Nationality: Egyptian.

E-mail: elbagalaty_2010@yahoo.com.

Phone: 01007537277

Address: Building 907 /distinct 4/ 6 October City / Giza.

Registration Date: 01/03/2014

Awarding Date:

Degree: Doctor of Philosophy.

Department: Electric Power and Machines Engineering.

Supervisors: Prof. Dr. Hussein I. Anis.

Dr. Ahmed A. Huzayyin.

Examiners: Prof. Dr. Hussein I. Anis.

Prof. Dr. Hany A. Elghazaly

Prof. Dr. Mohamed A. Ezz Elarab

(Professor in Shbeen ELkoom Engineering at Monoufia University)

Title of Thesis:

Current flow at the interface of copper and polyethylene in high-voltage apparatus.

Key Words:

Polyethylene – copper – interface –barrier to injection – dielectric constant.

Summary:

Computational quantum mechanics in the framework of density functional theory (DFT) is used to develop the interface model between Cu (111) and PE (001). The "bulk plus band line up" method and the projected density of states (PDOS) analysis are combined to calculate the actual barrier to charge injection. This combination of methods lead to finding new states appearing between the Fermi level of Cu and the conduction band of PE, which lowered the barrier to electrons injection. These states are due to morphological deformation that takes place in both the metal and the polymer at the interface. The most common chemical impurities that are normally found in PE are studied in this thesis to understand their impact on conduction mechanism. These impurities, such as carbonyl, vinyl, and conjugated double bond, produce trap states between the conduction and valence bands of PE, which reduce the barrier height to around the experimental value of 1 eV. The lowered barrier height increases the charge injection, which then facilitates the conduction mechanism. Variations in the dielectric constant at the interface are also a significant factor. The present study investigates the change in dielectric constant of PE at the interface with Cu using the microscopic polarization theory. It is concluded that the calculated current density using Schottky injection mechanism under a certain electric field and temperature does not only depend on the barrier height, but also on the relative dielectric constant at the interface, which in turn changed the current density and the conduction process.

ACKNOWLEDGMENTS

All praises and thanks to Allah for guiding me to complete this dissertation by providing me with very valuable persons to support me during my work.

I deeply grateful my supervisors Prof. Hussein Anis for his encouragement, helpful advice and the time he offered me during the research period and also Dr. Ahmed Huzayyin, who so wisely and patiently guided the research work of the thesis and truthful support and unfailing guidance.

Finally, my thanks to my family for their encouragement, support, and patience all the time in order to complete my thesis in its best form. I ask Allah to help me for my future work

TABLE OF CONTENTS

ACKNOWLEDGMENTS	l
TABLE OF CONTENTS	II
LIST OF FIGURES	V
LIST OF TABLES	VII
LIST OF SYMBOLS	VIII
LIST OF ABBREVIATIONS	X
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	1
1.1 Objectives of the thesis	1
1.2 Contents of thesis.	2
CHAPTER II: LITERATURE REVIEW	4
2.1 High Field Conduction in Polymers	4
2.1.1 Electric Breakdown and Degradation in Polymeric Insulators	5
2.2 Current Injection at the Interface.	
2.2.1 Conduction Mechanisms.	
2.2.1.1 Schottky Injection Mechanism.	
2.2.1.2 Fowler-Nordheim Tunneling.	
2.2.2 Experimental Data about Injection	
2.3 Electronic (Atomistic) Structure of Polyethylene	
2.4 Quantum Mechanics of Previous Work in Polymer and Interfaces	
2.4.1 Previous Studies on Polyethylene and Chemical Impurities	
2.4.2 Previous Studies on the Interface between Metals and Polyethylene	
2.4.3 Previous Studies on Changes in Dielectric Constant.	
CHAPTER III: BRIEF OVERVIEW OF COMPUTATIONAL QUANTUM MEC	
(DENSITY FUNCTIONAL THEORY)	12
3.1 Basics of Computational Quantum Mechanics	12
3.2 Solving the Many-body Problem	
3.2.1 Hartree-Fock method.	13
3.2.2 Post Hartree-Fock methods	
3.3 Basis of Density Function Theory (DFT)	15
3.3.1 Hohenberg and Kohn Theorems	15
3.3.2 Kohn and Sham method	16
3.4 Implementation of DFT	17
3.4.1 Basic Algorithm	17
3.4.2 Exchange-Correlation Approximation	
3.4.3 Basis sets approximation.	
3.4.4 Pseudopotential approximation.	
3.4.5 Structure relaxation.	
3.4.6 Boundary Conditions	
3.4.7 Density of states.	

CHAPTER IV: BULK AND SLAB MODEL FOR POLYETHYLENE AND COPPER	USING
QUANTUM ESPRESSO PACKAGE	25
4.1 Quantum ESPRESSO Package	25
4.2 Computational methods of the present work	26
4.3 Basic Definitions.	27
4.4 Model of Polyethylene	28
4.4.1 Pure Crystalline Polyethylene	28
4.4.2 Band gap correction.	30
4.4.3 Slab PE (001)	30
4.5 Copper Model	32
4.5.1 Bulk copper	32
4.5.2 Slab copper (111)	33
4.6 Summary	34
CHAPTER V: EFFECT OF MORPHOLOGICAL DEFORMATION ON BARRIE	
CHARGE INJECTION AT THE INTERFACE OF COPPER AND POLYETHYLENE	35
5.1 Introduction.	35
5.2 Interface Model between Cu (111) and PE (001).	
5.2.1 Cu (111) and PE (001) heterostructure	36
5.3 Barrier Injection Calculation.	37
5.3.1 Bulk plus band line up Method.	
5.3.2 Barrier injection Comparison.	
5.3.3 Projected density of states Analysis	
5.3.4 Actual barrier injection.	
5.5 Summary	
CHAPTER VI: EFFECT OF CHEMICAL IMPURITIES ON BARRIERS TO CH	
INJECTION AT THE INTERFACE OF COPPER AND POLYETHYLENE	
6.1 Introduction.	
6.1.1 Previous Studies.	
6.1.2 Characterization of Chemical Impurities.	
6.2 Carbonyl impurity model for PE (001) and Cu (111)	
6.2.1 Carbonyl group away from interface.	
6.2.1.1 Projected Density of States Analysis	
6.2.2 Terminal carbonyl group.	
6.2.2.1 Projected Density of States analysis	
6.2.3 Double doses of terminal carbonyl group.	
6.2.3.1 Projected Density of States analysis	
6.3 Vinyl impurity model for PE (001) and Cu (111)	
6.3.1 Projected Density of States analysis.	
6.4 Conjugated double bond impurity model for PE (001) and Cu (111)	
6.4.1 Projected Density of States analysis.	53

6.5 Barrier Injection Calculation.	53
6.6 Summary	
CHAPTER VII: CURRENT DENSITY AND RELATIVE DIELECTRIC	CONSTANT
CALCULATIONS FOR THE INTERFACE MODEL OF PE (001) AND CU (111).	58
7.1 Introduction	58
7.2 Calculation of Relative Dielectric Constant of Polyethylene	59
7.2.1 Theory of microscopic polarization.	59
7.2.2 Relative dielectric constant of slab polyethylene	60
7.3 Interface Model of PE (001)/Cu (111)	63
7.3.1 Charge density distribution at the interface.	63
7.3.2 Relative dielectric constant at the interface.	64
7.4 Current Density Calculations.	66
7.4.1 Schottky injection law	66
7.4.2 Current density for PE (001) and Cu (111)	68
7.5 Summary	71
CHAPTER VIII: CONCLUSIONS	72
CHAPTER IX: FUTURE WORK	74

LIST OF FIGURES

Figure (3-1): Flow chart for the numerical implementation of the SCF algorithm	18
Figure (3-2): The pseudopotentials versus atomic radius (r)	21
Figure (3-3): Simplified flow chart of structure relaxation computation procedure	22
Figure (3-4): A variety of systems is created by boundary conditions for a unit cell	23
Figure (4-1): Electronic band structure for (metal, semiconductor, and conductor)	27
Figure (4-2): Primitive unit cell in different planes.	28
Figure (4-3): Orthorhombic structure of the crystalline PE with calculated lattice constant	29
Figure (4-4): The infinite bulk PE.	29
Figure (4-5): PDOS for bulk PE	30
Figure (4-6): Slab PE (001) with vacuum thickness.	31
Figure (4-7): Planar average potential for bulk and slab PE	31
Figure (4-8): The primitive FCC unit cell and Bulk Copper model	32
Figure (4-9): Plane (111) for Cu's FCC structure.	33
Figure (4-10): Slab Cu (111) in all dimensions with vacuum thickness in finite	cells
direction	33
Figure (4-11): Planar average potential for bulk and slab Cu.	34
Figure (5-1): Heterostructure of Cu (111) and PE (001)	36
Figure (5-2): The heterostructure of Cu (111) and PE (001) in different planes	36
Figure (5-3): The planar average potential for Cu (111) and PE (001)	38
Figure (5-4): PDOS for PE atoms in Cu (111) and PE (001) compared with Slab PE	39
Figure (5-5): Heterostructure of Cu/PE interface showing dislocation in copper surface	atoms
facing the polymer chains which leads to deformation states in the band gap - the locate	ion of
atoms in the z-direction is shown in Å	40
Figure (6-1): Carbonyl and terminal carbonyl impurities in PE chain.	44
Figure (6-2): Vinyl and conjugated double bond impurities in PE chain	44
Figure (6-3): Heterostructure of carbonyl impurity in Cu/PE model	45
Figure (6-4): PDOS of carbonyl impurity in PE/Cu model.	46
Figure (6-5): Heterostructure of terminal carbonyl impurity in Cu/PE model	47
Figure (6-6): PDOS of terminal carbonyl impurity in PE/Cu model	
Figure (6-7): The terminal carbonyl locations on a PE chains.	48
Figure (6-8): Heterostructure of two terminal carbonyl impurities in Cu/PE model	49
Figure (6-9): PDOS of two terminal carbonyl impurities in PE/Cu model	50
Figure (6-10): Heterostructure of vinyl impurity in Cu/PE model	51
Figure (6-11): PDOS of vinyl impurity in PE/Cu model.	
Figure (6-12): Heterostructure of conjugated double bond impurity in Cu/PE model	
Figure (6-13): PDOS of conjugated double bond impurity in PE/Cu model	53

Figure (6-14): Bulk plus band line up procedure for all impurities model are compared with pure
model for Cu/PE. The circle in figure makes zoom in vacuum levels for different labeled
cases
Figure (6-15): PDOS for all impurities in interface model of Cu/PE
Figure (6-16): Energy diagram for all impurity states between CBM and VBM56
Figure (7-1): Heterostructure of slab PE (001) with applying external field
Figure (7-2): The difference charge density of the slab PE (001)61
Figure (7-3): The polarization of slab PE (001)62
Figure (7-4): The relative dielectric constant for slab PE (001) as a position dependent62
Figure (7-5): Heterostructure of PE (001) and Cu (111) with the external field63
Figure (7-6): Charge density distribution for Cu/PE interface model at different external
field64
Figure (7-7): The difference charge density of PE (001)/Cu (111) along the interface
direction65
Figure (7-8): The polarization of PE (001)/Cu (111) along the interface direction
Figure (7-9): The position dependent relative dielectric constant for PE (001)/Cu (111)66
Figure (7-10): (J-E) characteristic for Cu/PE interface model using Schottky injection at different
relative dielectric constant
Figure (7-11): Log scale of the current density at different relative dielectric constant69
Figure (7-12): Log scale of the current density at different electric field70
Figure (7-13): (I-V) characteristic for Cu/PE interface model at different relative dielectric
constant70

LIST OF TABLES

Table (5-1): Barriers injection for different metals	38
Table (6-1): The energy levels for different Cu/PE models	.54
Table (6-2): The calculated barrier height for electrons and holes.	.55

LIST OF SYMBOLS

λ Trap separation Electronic charge q \mathbf{E} Electric field J Current density Richardson constant A

 \mathbf{T} Temperature

 V_b Barrier to charge injection height

Boltzmann's constant K Dielectric constant 3

Free space dielectric constant 03Relative dielectric constant $\epsilon_{\rm r}$

Plank's constant h

Tunneling effective mass $\mathbf{m}_{\mathbf{T}}$

Electron affinity $\mathbf{E_a}$ a, b, c Lattice constant

Band gap

 $\begin{matrix}E_g\\V_b^{e}\\V_b^{h}\end{matrix}$ Electrons barrier height Holes barrier height WF Work function Particle mass m ∇^2 Laplacian operator Ψ Wavefunction $\mathbf{E_{T}}$ Total energy Potential energy $\mathbf{E}_{\mathbf{p}}$ Hamiltonian operator Ĥ

kinetic energy $\mathbf{E}_{\mathbf{k}}$ \mathbf{Z} Charge number

Locations of electron i $\mathbf{r_{i}}$ R_i Locations of nucleus j $\delta(\sigma_i, \sigma_i)$ Kronecker-Delta function Hartree-Fock Hamiltonian H_{HF}

 $\mathbf{E}_{\mathbf{P} \mathbf{x}}$ Exchange potential Hartree potential E_{P Hartree} Correlation potential $\mathbf{E}_{\mathbf{P}\,\mathbf{c}}$ Electron density n(r)

External potential energy E_{P ext}

F[n]Global functional

 $\mathbf{E}_{\mathbf{xc}}$ Exchange-correlation energy Khon and Sham Hamiltonian HKS E_{PKS} Effective potential of KS

Basis set functions $\emptyset_{\mathbf{k}}$ Constant coefficients C_{k} Size of a basis sets L **Cutoff radius** $\mathbf{r_c}$

 $E_{vac} \\$ Vacuum level $\mathbf{E_f}$ Fermi level P Polarization

Induced charge density

 $\begin{array}{c} \rho_{ind} \\ E_{loc} \\ E_{ext} \end{array}$ Localized field External field

LIST OF ABBREVIATIONS

PDOS Projected density of states **DFT Density Functional Theory** Conduction band minimum **CBM VBM** Valence band maximum **OE** Quantum Espresso PE Polyethylene Cu Copper Silver Ag Aluminum Al Au Gold

AuGoldPtPlatinumPdPalladiumSiSiliconSiO2Silicon oxide

SCLC Space-Charge-Limited Conduction XPS X-ray Photoelectron Spectroscope EELS Electron Energy Loss Spectroscope

LDA Local density approximation

GGA Generalized gradient approximation

HSE Heyd-Scuseria-Ernzerhof

HF Hybrid functionals

MCSCF Multi configuration self-consistent field

CI Configuration interaction

CC Coupled cluster

MP Perturbation theory by Møller and Plesset

HK Hohenberg and KohnKS Kohn and ShamSCF Self-consistent field

LCAO Linear Combination of Atomic Orbitals

PW Plane Waves
AS Atomic Sphere
CG Conjugate gradient

BFGS Broyden- Fletcher-Goldfarb-Shanno

MD Molecular Dynamics DOS Density of states

GDIIS Geometric direct inversion in the iterative subspace

CP Car-Parrinello

PWSCF Plane-Wave Self-Consistent Field
PAW Projector Augmented Waves
PBE Perdew-Burke-Ernzerhof
FCC Face centered cubic
PEA Pulsed electro-acoustic

ABSTRACT

Polymers are increasingly becoming the insulator of choice in various high voltage power apparatus, such as capacitors and cables. Under high operating fields conduction (leakage) currents in polymers contribute to the eventual breakdown of the insulator, thus determining its active life time. A barrier to charge injection at polymer/metal interface is a key to understanding the high field conduction in cables and supercapacitors. The conduction mechanism of injected currents is influenced by barriers to charge injection and also by possible variations in the dielectric constant at the interface. The present work investigates barriers to charge injection at the atomic level at the interface of copper and polyethylene (PE), one of the most dominant material combinations in the power industry. Emphasis is carried out in this work on morphological deformation.

Computational quantum mechanics in the framework of density functional theory (DFT) is used to develop the interface model between Cu (111) and PE (001) in the light of previous DFT studies on the interface of PE with Pt, Au, and Ag in terms of the absolute barriers to holes and electrons injection. The "bulk plus band line up" method and the projected density of states (PDOS) analysis are combined to calculate the actual barrier to charge injection, which was not well identified in similar studies. This combination of methods lead to finding new states appearing between the Fermi level of Cu and the conduction band of PE, which lowered the barrier to electrons injection. These states are due to morphological deformation that takes place in both the metal and the polymer at the interface. The present work stresses the importance of considering morphological deformation in lowering the barriers to charge injection in soft metal which is less considered as compared to chemical impurities.

The most common chemical impurities that are normally found in PE are studied in this thesis to understand their impact on conduction mechanism. These impurities, such as carbonyl, vinyl, and conjugated double bond, produce trap states between the conduction and valence bands of PE, which reduce the barrier height to around the experimental value of 1 eV. The lowered barrier height increases the charge injection, which then facilitates the conduction mechanism. This work recognizes the fact that the barrier height is not the sole factor affecting conduction. Variations in the dielectric constant at the interface are also a significant factor. The present study investigates the change in dielectric constant of PE at the interface with Cu using the microscopic polarization theory. It is concluded that the calculated current density using Schottky injection mechanism under a certain electric field and temperature does not only depend on the barrier height, but also on the relative dielectric constant at the interface, which in turn changed the current density and the conduction process.