Study of bronchoalveolar lavage cytology after oral prednisone treatment in COPD exacerbations

thesis

Submitted for partial Fulfillment of Master Degree In chest disease & tuberculosis

Presented by

Yasser Ahmed Abd El Mawgoud

M B B Ch
Faculty of medicine, Cairo university
Resident in Helwan University

Supervised by

Dr. Mohamed Mostafa Kamel

Assistant Prof. of chest disease Faculty of medicine, Cairo university

Dr. Raef Hosny Emam

Assistant Prof. of chest disease Faculty of medicine, Cairo university

Dr. Rasha Al Sherief

Lecturer of clinical pathology Faculty of medicine, Cairo university

> Faculty of medicine Cairo university 2012

Abstract

COPD patients were chosen according to the "Global Initiative for Chronic Obstructive Lung Disease" (GOLD) that defines chronic obstructive pulmonary disease "COPD" as a preventable and treatable disease with some significant extra pulmonary effects that may contribute to the severity in individual patients. Its pulmonary component is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lung to noxious particles or gases"

All patients were subjected to full history taking, careful general and local examination, routine laboratory investigations, chest x ray, arterial blood gas (ABG). bronchalveolar lavage cytology.

Key words

Budesonide - Interleukins - Respiratory Failure.

ACKNOWLEDGMENT

Before all, Thanks to "GOD" who granted me the power, and reconciliation at all time.

My profound gratitude is expressed to Dr. Mohamed Mostafa Kamel Assistant professor of Chest disease faculty of Medicine, Cairo university. My respectful thanks to Dr. Raef Hosni Emam Assistant professor of Chest disease faculty of Medicine, Cairo university.

For their effective help, careful comments and kind supervision throughout every step in this work.

My special thanks, to **Dr. Rasha Al Sherief** Lecturer of Clinical Pathology, faculty of Medicine, Cairo university. for her active participation.

Finally I Owe a special depth of thanks, to my parents and my wife who help me, support me, encourage me, a lot, and there are no thanks words in any language can expresse them what they really deserve.

LIST OF TABLES

Table		Page
1	Staging system for COPD severity	22
2	Comparison between COPD exacerbation group before treatment and control group(stable copd) regarding eosinophils	78
3	Comparison between COPD exacerbation group after treatment and control group(stable COPD) regarding eosinophils	79
4	Comparison between COPD exacerbation group before and after treatment regarding eosinophils	79
5	Comparison between COPD exacerbation group before treatment and control group(stable COPD) regarding neutrophils	81
6	Comparison between COPD exacerbation group after treatment and control group(stable COPD) regarding neutrophils	81
7	Comparison between COPD exacerbation group before and after treatment regarding neutrophils	82
8	Comparison between COPD exacerbation group before treatment and control group(stable COPD) regarding lymphocytes	84
9	Comparison between COPD exacerbation group after treatment and control group(stable COPD) regarding lymphocytes	84
10	Comparison between COPD exacerbation group before and after treatment regarding lymphocytes	85
11	Comparison between COPD exacerbation group before treatment and control group (stable COPD) regarding	87

	macrophages	
12	Comparison between COPD exacerbation group after treatment and control group(stable COPD) regarding macrophages	87
13	Comparison between COPD exacerbation group before and after treatment regarding macrophages	88

LIST OF FIGURES

Figures		Page
		J
1	Pathology of central airways in COPD	6
2	Pathology of peripheral airways in COPD	7
3	Pathology of alveoli in COPD	8
4	Pathology of pulmonary vasculature in COPD	9
5	Endobronchial valve side view	33
6	Implanted Endobronchial valve end view	33
7	COPD exacerbation group before and after treatment	80
	regarding eosinophils	
8	COPD exacerbation group before and after treatment regarding neutrophils	83
9	COPD exacerbation group before and after treatment regarding lymphocytes	86
10	COPD exacerbation group before and after treatment regarding macrophages	89

LIST OF ABBREVIATIONS

ABG Arterial Blood Gases

ACTH Adrenocorticotropic Hormone

α**1-***AT* Alpha -1- Anti Trypsine

ATS American Thoracic Society

ASM Air way Smooth Muscle

BAL Broncho Alveolar Lavage

BALF Broncho Alveolar Lavage FluidBDP Beclo Methasone Diprpionate

BUD Budesonide

COPD Chronic Obstructive Pulmonary Disease

CRH Cortico Tropic Releasing Hormone

CSs Corticosteroids

DPI Dry Powder Inhaler

ECG Electro Cardio Gram

ECP Eosinophilic Catinic Protein
EGF Epidermal Growth Factor

ERS European Respiratory Society

FEV1 Forced Expiratory Volume In First Second

FVC Forced Vital Capacity
FP Fluticasone Propionate

GC-SF Granulocytes Colony Stimulating Factor

GM-CSF Granulocytes Macrophage Colony Stimulating Factor GOLD Global Initiative for Chronic Obstructive Lung Disease

Ics Inhaled Corticosteroids

IL Interleukins

LABAs Long Acting Beta Agonist

LVRS	Lung Volume Reduction Surgery
,	

MDI Metered Dose InhalerMF Mometasone Furonat

MIP Macrophage Inflammatory Proteins

MMP Matrix Metalo Proteins

NE Neutrophil Elastase NF-B Nuclear Factor B

NICE National Institute for heath and Excellence
NIPPV Non Invasive Positive Pressure Ventilation

PaO2 Partial arterial pressure of Oxygen

PaCO2 Partial arterial pressure of Carbon dioxide

PDE-4 Phospho Di Esterase 4

RF Respiratory Failure

TGF-B Transforming Growth Factor BTNF-α Tumor necrosis factor alpha

V/Q Ventilation Perfusion Ratio

STUDY OF BRONCHOALVEOLAR LAVAGE CYTOLOGY AFTER ORAL PREDNISONE TREATMENT IN COPD EXACERBATIONS

LIST OF CONTENTS

Subject	Page
Acknowledgement List of Tables List of Figures Aim of the work	- "8"
Review of Literature:	
Chapter I: Chronic obstructive pulmonary disease. (COPD)	1
■ Definition	2
■ Epidemiology	3
Risk of factors	4
■ Pathology	5
Pathogenesis	10
Pathophysiology	16
Chapter II: Management of COPD	19
Objectives of COPD management	19
■ Effective COPD management plane	19
Assessment and monitor of the disease	19
 Management of stable COPD 	27
■ Management of COPD exacerbation	38
■ Definition	38
■ Epidemiology	38
Classification	39
■ Pathology	41
■ Diagnosis and assessment of severity	42
■ Management	45
Future therapeutic treatment in COPD	50
Chapter III: Role of corticosteroids in COPD	54
 Mechanism of action of corticosteroids in COPD 	56
Individual corticosteroids	60

 Role of systemic corticosteroid in stable COPD 	64
 Role of systemic corticosteroid in COPD exacerbation. 	66
Adverse effect of corticosteroid	67
Patients & Methods	73
Results	73
Discussion	90
Conclusion & Recommendation	10
Summary	10
References	11
Arabic Summary	13

AIM OF THE WORK

Study the effect of oral prednisone on differential cell count of bronchoalveolar lavage cytology in patients with COPD exacerbations.

Chapter I: chronic obstructive pulmonary disease (COPD)

INTRODUCTION

Chronic Obstructive Pulmonary Disease (**COPD**) is a major public health problem. This disease is currently the fourth leading cause of chronic morbidity and mortality in united states and it is projected to rank fifth in 2020 in burden of disease caused world wide. (*Lopez. et al; 2006*)

Patients with *COPD* frequently have **exacerbations**, which are an important cause of morbidity, mortality, and health care cost (*Hurst*, 2004). Although many patients are ultimately admitted, a substantial percentage is treated as outpatient.

(Aaron. et al., 2003).

In addition to antibiotics, bronchodilators, and oxygen there is strong evidence that *systemic corticosteroids* are effective in management of *COPD* exacerbations concerning improvement in lung function parameters, symptom scores, reduction in the risk of treatment failure and the length of hospital stay. (*Maltais. et al; 2002*)

CHRONIC OBSTRUCTIVE PULMONARY DISEASE <u>DEFINITION:</u>

Celli and colleagues update defined *COPD* as "a preventable and treatable disease state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive

and associated with an abnormal inflammatory response of the lungs to noxious particles or gases, primarily caused by cigarette smoking. Although COPD affects the lungs, it also produces significant systemic consequences" (*Celli et al.*, 2007).

According to the *Global Initiative for Chronic Obstructive Lung Disease (GOLD)* definition "*COPD* is a preventable and treatable disease with some significant extrapulmonary effects that may contribute to the severity in individual patients. Its pulmonary component is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lung to noxious particles or gases" (*Lopez. et al;* 2006)

EPIDEMIOLOGY:

- *COPD* prevalence, morbidity, and mortality vary across countries and across different groups within countries but, in general, are directly related to the prevalence of tobacco smoking, although in many countries, air pollution resulting from the burning of wood and other biomass fuels has also been identified as a *COPD* risk factor.
- The prevalence and burden of *COPD* are projected to increase in the coming decades due to continued exposure to *COPD* risk factors and the changing age structure of the worlde population.

• *COPD* is a costly disease with both direct costs (value of health care resources devoted to diagnosis and medical management) and indirect costs (monetary consequences of disability, missed work, premature mortality, and caregiver or family costs resulting from the illness). *(Tirimann PR; 1996)*

RISK FACTORS:

- Worldwide, cigarette smoking is the most commonly encountered risk factor for *COPD*.
- The genetic risk factor that is best documented is a severe hereditary *deficiency of alpha-1 antitrypsin*. It provides a model for how other genetic risk factors are thought to contribute to *COPD*.
- Of the many inhalational exposures that may be encountered over a lifetime, only tobacco smoke and occupational dusts and chemicals (vapors, irritants, and fumes) are known to cause *COPD* on their own.
- Indoor air pollution, especially from burning biomass fuels in confined spaces, is associated with increased risk for *COPD* in developing countries, especially among women. (*Celli BR et al*; 2005)