

HEAT TRANSFER ENHANCEMENT FOR HIGH VOLTAGE APPLICATIONS COOLING USING METAL OXIDE NANOFLUIDS

By

Amr Mohamed Naguib Azab Abido

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
MECHANICAL POWER ENGINEERING

Faculty of Engineering, Cairo University Giza, Egypt.
2018

HEAT TRANSFER ENHANCEMENT FOR HIGH VOLTAGE APPLICATIONS COOLING USING METAL OXIDE NANOFLUIDS

By

Amr Mohamed Naguib Azab Abido

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Abdallah Sayed Hanafi

Professor of
Mechanical Power Engineering
Faculty of Engineering
Cairo University

Prof. Dr. Usama Seddik Abdel-Ghaffar

Professor of
Nuclear physics
Vice Chairman of Egyptian Nuclear and
Radiological Regulatory Authority

Faculty of Engineering, Cairo University Giza, Egypt.
2018

HEAT TRANSFER ENHANCEMENT FOR HIGH VOLTAGE APPLICATIONS COOLING USING METAL OXIDE NANOFLUIDS

By

Amr Mohamed Naguib Azab Abido

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
MECHANICAL POWER ENGINEERING

Approved by the	
Examining Committee:	
Prof. Dr. Abdallah Sayed Hanafi Proffesor of Mechanical Power Engineering, Facult	(Main Advisor) y of Enegineering, Cairo University
Prof. Dr. Abdel-Wahed Fouad El-Dib Proffesor of Mechanical Power Engineering, Facult	(Internal Examiner) y of Enegineering, Cairo University
Prof. Dr. Mahmoud Abdel-Fatah El-Kady Proffesor of Mechanical Power Engineering, Facult	(External Examiner) y of Enegineering, Al-Azhar University

Faculty of Engineering, Cairo University Giza, Egypt.
2018

Engineer's Name: Amr Mohamed Naguib Azab Abido

Date of Birth: 22 / 11 / 1980

Nationality: Egyptian

E-mail: amr_nogub@hotmail.com

Phone: (+20) 1003067178

Address: No..37, Street no.263, El Maadi El Gedida, Cairo, Egypt.

Registration Date: 01/10/2011 **Awarding Date:** / 2018 **Degree: Doctor of Philosophy**

Department: Mechanical Power Engineering

Supervisors: -Prof. Dr. Abdallah Sayed Hanafi

-Prof. Dr. Usama Seddik Abdel-Ghaffar

(Professor of Nuclear physics, Vice Chairman of Egyptian Nuclear and Radiological

Regulatory Authority)

Examiners: - Prof. Dr. Abdallah Sayed Hanafi (Main Advisor)

-Prof. Dr. Abdel-Wahed Fouad El-Dib
 -Prof. Dr. Mahmoud Abdel-Fatah El-Kady
 (External Examiner)

(Proffesor of Mechanical Power Engineering, Faculty of Enegineering, Al-Azhar University)

Thesis Title:- "Heat Transfer Enhancement for High Voltage Applications Cooling Using Metal Oxide Nanofluids"

Key Words: Nanofluid, Nanoparticle, Thermal Conductivity, Electrical Conductivity, Viscosity, Heat Transfer Coefficient.

Summary:

"The high voltage applications' cooling uses the double distilled water (DDW) as a cooling fluid because of its low electrical conductivity. This study was performed for enhancing the cooling of the MGC-20 Cyclotron by using the metal oxides nanofluids as a cooling fluid. The aluminum oxide (Al₂O₃), copper oxide (CuO) and magnesium oxide (MgO) were used as metal oxides nanoparticles for nanofluids synthesizing to examine the availability of using them as cooling fluids in the MGC-20 cyclotron. The Al₂O₃, CuO and MgO nanofluids were prepared with different weight concentrations of nanoparticles oxides. The thermal conductivity (TC) of Al₂O₃, CuO and MgO nanofluids were increased with temperature rising as well as with increase of the oxides concentration in the nanofluid, where the 1.2% wt. CuO nanofluid offered about 16 % increase than the DDW TC at room temperature (RT), then the 1.2% wt. Al₂O₃ nanofluid thermal conductivity increased by 7% and the 1.2% wt. MgO nanofluid increased by 3% at RT. The electrical conductivity was measured for the all nanofluids and it increased with increase of the oxides concentration, as well as with temperature increase. The 1.2% Al₂O₃ nanofluid was the most suitable nanofluid for the high voltage applications and it was tested in a heat transfer system. The overall heat transfer coefficients of the 1.2% Al₂O₃ nanofluid were greater than the double distilled water coefficients at the different flow rates (by about 13%: 17%). So the 1.2% wt. of Al₂O₃ nanofluid could be used for enhancing the cooling process in the high voltage applications especially for the MGC-20 Cyclotron."

ACKNOWLEDGEMENT

First, thanks to Allah

It is with pleasure and gratitude that I wish to express my acknowledgement to the persons who have contributed with their valuable time, assistance and cooperation for the completeness of this thesis.

The author also expresses his deepest thanks and appreciation to Prof. Dr. Abdallah Hanafi, Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, for his kind supervision, useful guidance, and wise suggestions during this work.

The author would like to express his deep gratitude and special thanks to Prof. Dr. Usama Seddik, Professor of Nuclear physics, Vice Chairman of Egyptian Nuclear and Radiological Regulatory Authority, for his valuable supervision, support, co-operation, helpful guidance, and his great assistance to complete this thesis.

The author is very grateful to Prof. Dr. Mogahed El-Abyad, Director of the Cyclotron Project, Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, for his co-operation, useful guidance, and wise suggestions during this work.

My deep thanks go to Dr. Ismail Abd El-Rahim, Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority, for his valuable help during the experimental work.

Many thanks go to the cyclotron staff and my colleagues for their help to finish the experimental work of this thesis.

My endless thanks are due to my family, especially to my mother, for their patience, assistance, and their encouragements all these years.

Finally, my special thanks to my wife and her family for providing me with the suitable environment to perform this work, and their encouragements to finish this work.

TABLE OF CONTENTS

		Page
LIS	T OF TABLES	V
LIS	Γ OF FIGURES	VII
NOI	MENCLATURE	XI
ABS	STRACT	XIII
CII	A DOTED (1) INTO ODLICONO	1
	APTER (1) INTRODUCTION	1
1.1	Improving Heat Transfer Efficiency	1
1.2	Nanoscience and Nanotechnology Concepts	2
1.3	The Nanoscale Importance	2
1.4	The Nanofluids (NFs)	3
1.5	Nanofluids Applications	4
	1.5.1Nanofluids thermal applications	5
	1.5.2.High voltage applications	5
	1.5.2.2The cyclotron accelerator	6
	1.5.2.2.The MGC-20 Cyclotron	6
1.6	Nanofluids Preparation Methods	7
	1.6.1Preparation of nanofluids via a two-step method	8
	1.6.2Preparation of nanofluids via a one-step method	8
1.7	Production of Nanoparticles	9
CH	APTER (2) LITERATURE REVIEW AND OBJECTIVE OF WORK	10
2.1	Introduction	10
2.2	Stability of Nanofluids	10
	2.2.1 Factors affecting nanofluids stability	10
	2.2.1.1 pH value of the suspension	11
	2.2.1.2 Surface modifiers	11
	2.2.1.3 Preparation method	12
	2.2.1.4 Nanoparticles concentration	12
	2.2.1.5 Homogenizing methods	12
2.3	2.2.2 Nanofluids stability evaluation techniques Thermo-physical and Transport Properties of Nanofluids	12 13
2.3	2.3.1Thermal conductivity (TC) of NFs	13
	2.3.1.1pH value effect	14
	2.3.1.2 Adding surface modifiers effect	14
	2.3.1.3 Temperature effect	14
	2.3.1.4 NPs morphology effect	15
	2.3.1.5 NPs concentration effect	15
	2.3.1.6 NF fabrication method effect	15
	2.3.1.7 Effect of stability of NFs	15
	2.3.2Prediction of the thermal conductivity of nanofluid	16

	2.3.3Viscosity of nanofluids	16
	2.3.3.1Surface modifiers	17
	2.3.3.2 Nanoparticles concentration effect on viscosity	17
	2.3.3.3Effect of temperature on viscosity	17
	2.3.3.4 Preparation method effect on viscosity2.3.4 Prediction of the Viscosity of nanofluid	17 17
	2.3.5 Heat transfer coefficient (HTC) of nanofluids	18
	2.3.6 Electrical conductivity (EC) of nanofluids	18
	2.3.6.1 Electrical conductivity of fluids	18
	2.3.6.2 Procedures for determination of nanofluids electrical conductivity	18
2.4	Objectives of the Present Work	19
CH	APTER (3) EXPERIMENTAL WORK	21
3.1	Introduction	21
3.2	Experimental Procedures	21
3.3	The Instruments and Tools	22
3.4	Materials and Nanofluids Synthesizing Methods	23
	3.4.1 Materials	23
	3.4.2 Nanofluids synthesizing method	23
	3.4.3 Nanoparticles preparation	24
	3.4.3.1The sol. gel (solution gel) technique	25
3.5	The Utilized Methods for the Structural Characterization	26
	3.5.1 X-Ray Diffraction (XRD)	26
	3.5.2 Transmission Electron Microscopy (TEM)	27
3.6	The Utilized Methods of the Physical Properties Characterization	27
	3.6.1 Thermal Conductivity (TC) Measurement	27
	3.6.1.1 Transient Hot-Wire (THW) Method	28
	3.6.2 Viscosity measurements	30
	3.6.3 The electrical conductivity (EC) measurements	31
CH	APTER (4) EXPERIMENTAL RESULTS AND DISCUSSIONS	33
4.1	Introduction	33
4.2	Nanoparticles Preparation and Structural Characterization	33
	4.2.1 Preparation and structural characterization of aluminum oxide	35
	4.2.1.1 XRD results of aluminum oxide	36
	4.2.1.2 TEM analysis of aluminum oxide	39
	4.2.1.2 Preparation and structural characterization of copper oxide	40
	-	40
	4.2.2.1 XRD results of copper oxide 4.2.2.2 TEM analysis of copper oxide	41 44
	# / / / LENVEAUALVSIS DE COUDEL DE DE	44

	4.2.3 Preparation and structural characterization of magnesium oxide	45
	4.2.3.1 XRD results of magnesium oxide	46
	4.2.3.2 TEM analysis of magnesium oxide	48
4.3	Nanofluids Preparation	49
	4.3.1 Al ₂ O ₃ nanofluids preparation	50
	4.3.2 Copper oxide nanofluids preparation	52
	4.3.3 Magnesium oxide nanofluids preparation	53
4.4	Thermal Conductivity (TC) Measurements	54
	4.4.1 The double distilled water and the base fluid thermal conductivities	55
	4.4.2 Al ₂ O ₃ nanofluids thermal conductivity	56
	4.4.3 CuO nanofluids thermal conductivity	58
	4.4.4 MgO Nanofluids thermal conductivity	59
4.5	Viscosity Measurements	62
	4.5.1 Al ₂ O ₃ nanofluids viscosity	64
	4.5.2 CuO nanofluids viscosity	6.5
	4.5.3 MgO nanofluids viscosity	60
4.6	Electrical Conductivity Measurements	68
	4.6.1 Al ₂ O ₃ NFs electrical conductivity results	69
	4.6.2 CuO NFs electrical conductivity results	70
	4.6.3 MgO NFs electrical Conductivity results	70
4.7	Heat Transfer Enhancement in Plate Heat Exchanger Using Al ₂ O ₃ Nanofluid	75
4.8	Experimental Heat Transfer System	75
4.9	The Heat Exchanger (Plate Type)	77
	4.9.1 Correlations for heat transfer in the plate heat exchanger	77
	4.9.1.1Overall heat transfer coefficient (LMTD Method)	79
4.10	Overall Heat Transfer Coefficient Determination Procedures	80
4.11	Plate Heat Transfer Parameters Estimation	80
	4.11.1 The constant Parameters in All Heat Transfer System Experiments	81
4.12	Overall Heat Transfer Coefficient Experiments	82
	4.12.1 The double distilled water (DDW) experiments	82
	4.12.2 The (1.2% wt.) Al ₂ O ₃ nanofluid experiments	84
	4.12.3 The heat transfer enhancement using (1.2% wt.) Al ₂ O ₃ nanofluid	8
4.13	Development of Correlations for the Nusselt Number:	88
	4.13.1 The Nusselt number correlation for the DDW experiments	89
	4.13.2 The Nusselt number correlation for the ALO. NE experiments	O.

4.14 Estimation of the Pressure Drop in the Plate Heat exchanger	93
4.14.1 Estimation the pressure drop for the DDW experiments	95
4.14.2 Estimation the pressure drop for the Al ₂ O ₃ NF experiments	96
4.15 Economic Optimization for the Hot Flow Rate at the DDW and Al ₂ O ₃ Nanofluid Experiments	97
CHAPTER (5) CONCLUSIONS AND RECOMMENDATIONS	101
5.1 Conclusions	101
5.2 Recommendations for Future Studies	102
REFERENCES	
APPENDIX(A)	111
APPENDIX(B)	112

LIST OF TABLES

		Page
Table (3.1):	Chemical materials used in the experimental work	23
Table (4.1):	Data of the alumina XRD peaks	38
Table (4.2):	Data of the copper oxide XRD peaks	43
Table (4.3):	Data of the magnesium oxide XRD peaks	47
Table (4.4):	Thermal conductivity enhancement at different temperatures for various Al ₂ O ₃ weight concentrations in relative to the base fluid	57
Table (4.5):	Thermal conductivity enhancement at different temperatures for various CuO weight concentrations in relative to the base fluid	59
Table (4.6):	Thermal conductivity enhancement at different temperatures for various MgO weight concentrations in relative to the base fluid	60
Table (4.7):	Thermal conductivity enhancement at different temperatures for Al_2O_3 , $CuO \& MgO$ at 1.2% wt. in relative to the DDW.	62
Table (4.8):	Viscosity of oleic acid, DDW and base fluid at different temperatures	63
Table (4.9):	Viscosity of Al ₂ O ₃ , CuO and MgO nanofluids with 1.2% wt. at different temperatures	67
Table(4.10):	Thermal conductivity, viscosity and electrical conductivity for the (1.2% wt.) oxides nanofluids and the DDW at RT	73
Table(4.11):	Many publications summery for the average particle size of the sol.gel prepared Al_2O_3 , $CuO\ \&\ MgO$	74
Table(4.12):	Many publications summery for measured thermal conductivity enhancement of nanofluids containing Al ₂ O ₃ , CuO & MgO nanoparticles.	74
Table(4.13):	The measured temperatures of the inlet and outlet of the plate heat exchanger at the steady state case for the DDW experiments	82
Table(4.14):	The hot fluid properties at the mean temperatures for the DDW experiments	83
Table(4.15):	The total heat transfer, overall heat transfer coefficient and Reynolds number of the hot fluid for the DDW experiments	83
Table(4.16):	The HTC and the overall heat transfer coefficient of the hot fluid in the DDW experiments	84
Table(4.17):	The measured temperatures of the inlet and outlet of the plate heat exchanger at the steady state case for the Al_2O_3 nanofluid experiments	84
Table(4.18):	The hot fluid properties at the mean temperatures for the Al_2O_3 nanofluid experiments	85

		Page
Table(4.19):	The total heat transfer, overall heat transfer coefficient and Reynolds number of the hot fluid for the Al ₂ O ₃ nanofluid experiments	86
Table(4.20):	The HTC and the overall heat transfer coefficient of the hot fluid in the Al_2O_3 nanofluid experiments	86
Table(4.21):	The overall heat transfer coefficient enhancement at the different flow rates for using the Al_2O_3 nanofluid instead of the DDW	87
Table(4.22):	The heat transfer coefficient enhancement at the different flow rates for using the Al_2O_3 nanofluid instead of the DDW	88
Table(4.23):	The Nusselt, Prandtl and Reynolds numbers at different flow rates of the DDW.	89
Table(4.24):	The Nusselt numbers comparison for the DDW	91
Table(4.25):	The Nusselt, Prandtl and Reynolds numbers at different flow rates of the $1.2\%~Al_2O_3$ nanofluid	91
Table(4.26):	The Nusselt numbers comparison for the 1.2% Al ₂ O ₃ NF	93
Table(4.27):	Pressure drop and pumping power in the PHE hot circuit of DDW experiments	95
Table(4.28):	The cold DDW flow rate properties at the mean temperature of the DDW experiments	95
Table(4.29):	Pressure drop values and pumping power in the cold circuit of PHE for DDW experiments	96
Table(4.30):	Pressure drop values and pumping power in the PHE hot circuit for Al_2O_3 NF experiments.	96
Table(4.31):	The cold DDW flow rate properties at the mean temperature of the Al ₂ O ₃ NF experiments	96
Table(4.32):	Pressure drop values and their pumping power in the PHE cold circuit at the Al2O3 NF experiments	97
Table(4.33):	The total consumed pumping power in the PHE for the DDW and Al_2O_3 NF experiments.	97
Table(4.34):	The total annual cost and annual heat profit for the DDW and Al_2O_3 NF experiments	98
Table(4.35):	Comparison of the present work with some previous works using different heat transfer systems	100

LIST OF FIGURES

			Page
Fig. (1.1)	:	The effect of increasing the total surface area provided by nanostructured material in 1 cm cube	3
Fig. (1.2)	:	Schematic of nanoparticles dispersion in the base fluid	4
Fig. (1.3)	:	Different applications of nanofluids	4
Fig. (1.4)	:	Potential of nanofluids for thermal application	5
Fig. (1.5)	:	Cyclotron Dee's	6
Fig. (1.6)	:	Photograph of the main chamber of the MGC-20 Cyclotron.	7
Fig. (1.7)	:	Common base fluids, nanoparticles, and surfactants for synthesizing nanofluid	8
Fig. (1.8)	:	One-step nanofluid production system, which fabricates and suspends NPs into low vapor pressure liquids at the same time	9
Fig. (2.1)	:	Factors affecting stability of NFs	11
Fig. (2.2)	:	Nanofluids stability evaluation techniques	13
Fig. (2.3)	:	Factors which affect on the NF's thermo-physical properties	13
Fig. (3.1)	:	a) Fistreem cyclon distiller.b) Hot plate stirrer.c) Genlab drying furnace.d) Carbolite tubular furnace	22
Fig. (3.2)	:	Procedures of synthesis and evaluation of the nanofluids for two- step technique	24
Fig. (3.3)	:	The ultrasonic bath	24
Fig. (3.4)	:	Flow chart of sol. gel processing	25
Fig. (3.5)	:	The X-Ray Diffraction instrument	26
Fig. (3.6)	:	JEOL Transmission Electron Microscopy(TEM)	27
Fig. (3.7)	:	Schematic view of the Transient Hot-Wire technique	28
Fig. (3.8)	:	The Transient Hot-Wire System	29
Fig. (3.9)	:	The Gardco Viscometer	30
Fig.(3.10)	:	The two aluminum electrodes of the EC	31

		Page
Fig.(3.11):	a) Schematic of the EC circuit diagramb) The EC measuring setup measuring setup	32
Fig. (4.1) :	Main steps of the two step method of nanofluid preparation	33
Fig. (4.2):	XRD pattern of Al ₂ O ₃ nanoparticles of Alpha Chemika Company	34
Fig. (4.3):	XRD pattern of MgO nanoparticles of Alpha Chemika Company	35
Fig. (4.4) :	Steps of the alumina formation by the sol.gel method: a) The formed gel b) The dried gel c) Grinded dried gel.	36
Fig. (4.5):	XRD pattern of annealed grinded gel for alumina at 800°C	37
Fig. (4.6):	XRD pattern of annealed grinded gel for alumina preparation at 950°C	37
Fig. (4.7):	XRD pattern of annealed grinded gel for alumina preparation at 900°C	38
Fig. (4.8) :	TEM micrograph of Al ₂ O ₃ nanostructures	39
Fig. (4.9) :	Particle size distribution of Al ₂ O ₃ nanoparticles powder	40
Fig.(4.10):	Steps of the copper oxide formation by the sol.gel method; a) The primary solution b) The formed gel c) Grinded burned gel	41
Fig.(4.11):	XRD pattern of grinded burned gel for CuO preparation at 300^{0} C	41
Fig.(4.12):	XRD pattern of annealed burned gel for CuO preparation at $600^{\circ}\mathrm{C}$	42
Fig.(4.13):	XRD pattern of prepared copper oxide(CuO) powder at (900°C)	42
Fig.(4.14):	TEM micrograph of CuO nanostructures	44
Fig.(4.15):	Copper oxide particle size distribution	44
Fig.(4.16):	Steps of the magnesium oxide formation by the sol.gel method; a) The primary solution b) The formed gel c) Grinded dried gel	45
Fig.(4.17):	XRD pattern of grinded burned gel for MgO preparation at 500°C	46
Fig.(4.18):	XRD pattern of annealed dried gel of MgO preparation at 550°C	47
Fig.(4.19):	TEM micrograph of MgO nanostructures	48
Fig.(4.20):	Magnesium oxide particle size distribution	48
Fig.(4.21):	Synthesis of the nanofluids procedure via two-step technique.	49
Fig.(4.22):	(1% wt.) Al ₂ O ₃ nanofluid without stabilizing agent	50

		Page
Fig.(4.23):	a)Synthesized Al_2O_3 NFs using oleic acid as a surfactant . b) Sonication effect on synthesized Al_2O_3 NF (1% wt.) with oleic acid	51
Fig.(4.24):	1% wt. CuO nanofluid without surface modifier	52
Fig.(4.25):	a)Synthesized CuO nanofluids using oleic acid as a surface modifier b) Sonication effect on synthesized CuO nanofluid (1% wt.) with aid of oleic acid	53
Fig.(4.26):	1% wt. MgO nanofluid without surfactant.	53
Fig.(4.27):	a)Synthesized MgO nanofluids using oleic acid.b) Synthesized MgO nanofluid (1% wt.) using oleic acid with sonication effect	54
Fig.(4.28):	Thermal conductivity of DDW and base fluid vs. temperature	56
Fig.(4.29):	Thermal conductivity of Al_2O_3 Nanofluids at different wt.% of Al_2O_3 and temperature	56
Fig.(4.30):	Thermal conductivity enhancement of Al_2O_3 vs. different weight fraction% at Temperatures 25 $^0C\&$ 40 0C	57
Fig.(4.31):	Thermal conductivity of CuO nanofluid at different wt.% CuO concentration and temperature	58
Fig.(4.32):	Thermal conductivity enhancement of CuO nanofluids vs. different weight fraction% at temperatures 25 $^{0}\mathrm{C}$ & 40 $^{0}\mathrm{C}$	59
Fig.(4.33):	Thermal conductivity of MgO nanofluids at different wt.% MgO concentration and temperature	60
Fig.(4.34):	•	61
Fig.(4.35):	Viscosity of DDW, oleic acid & base fluid vs. temperatures	63
Fig.(4.36):	Viscosity of Al_2O_3 NFs variation with temperature at different $Al_2O_3wt.\%$	64
Fig.(4.37):	Viscosity of Al ₂ O ₃ NFs vs. Al ₂ O ₃ wt.% at different temperatures	64
Fig.(4.38):	CuO NFs viscosity variation with temperature at different CuO wt.%	65
Fig.(4.39):	Viscosity of CuO NFs variation with CuO wt.% at different temperatures	65
Fig.(4.40):	MgO NFs viscosity variation with temperature at different MgO wt.%	66
Fig.(4.41):	Viscosity variation of MgO nanofluids vs. MgO concentrations at different temperatures	66

		Page
Fig.(4.42):	Electrical conductivity of DDW & base fluid vs. temperature	68
Fig.(4.43):	Influence of temperature on the electrical conductivity of Al ₂ O ₃ at different weight fractions	69
Fig.(4.44):	Influence of temperature on the electrical conductivity of CuO at different weight fractions	70
Fig.(4.45):	Influence of temperature on the electrical conductivity of MgO at different weight fractions	71
Fig.(4.46):	Electrical conductivity of Al ₂ O ₃ , CuO & MgO with 1.2% wt. at different temperatures	71
Fig.(4.47):	Electrical conductivity of the DDW and the three oxides nanofluids with 1.2% wt. fractions and at Temperature (25 ^o C)	72
Fig.(4.48):	Comparison between the DDW and the (1.2% wt.) oxides nanofluids properties at temperature (25 °C)	72
Fig.(4.49):	The Experimental Heat Transfer System.	75
Fig.(4.50):	Flow diagram of experimental heat transfer setup	76
Fig.(4.51):	The one pass counter current flow at a plate heat exchanger	77
Fig.(4.52):	Inverse of overall heat transfer coefficient vs. inverse of the DDW velocity powered to 1/3.	83
Fig.(4.53):	Inverse of overall heat transfer coefficient vs. inverse of the Al_2O_3 nanofluid velocity powered to $1/3$	86
Fig.(4.54):	Overall heat transfer coefficient (U) vs. the hot fluid flow rate for the Al_2O_3 nanofluid & the DDW	87
Fig.(4.55):	The heat transfer coefficient (h_h) vs. the hot fluid flow rate for the Al_2O_3 nanofluid & the DDW	88
Fig.(4.56):	Nusselt number vs. Reynolds number for the DDW	90
Fig.(4.57):	Nu/Re ^{0.509} ; as a function of Prandtl number for the DDW in the plate heat exchanger	90
Fig.(4.58):	Nusselt number vs. Reynolds number for the 1.2% Al_2O_3 NF	92
Fig.(4.59):	Nu/Re0.585; as a function of Prandtl number for the 1.2% Al_2O_3 NF in the plate heat exchanger	92
Fig.(4.60):	The plate heat exchanger dimensions.	93
Fig.(4.61):	Chart for determination the optimum flow rate based on economic principle	99