

Synthesis and characterization of some metal complexes containing the chromone moiety

A Thesis Submitted
By
Noha Nabil Abdel Azim

Researcher

Department of Chemistry, Faculty of Education, Ain Shams University B.Sc. & Ed. 2007

General diploma For the Teacher's Preparation In Science (Chemistry) 2012 Special diploma For the Teacher's Preparation In Science (Inorganic Chemistry) 2013

For
The Degree Of
Master of Teacher's Preparation In Science
(Inorganic Chemistry)

Supervisors

Prof. Dr.Ali Mahmoud Taha

Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University. *Prof. Dr. Magdy Shebl Saleh*

Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

*Dr.Omima Mohamed Ibrahim Adly**

Assistant Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

Cairo -2018

Title sheet

Synthesis and characterization of some metal complexes containing the chromone moiety

Candidate: Noha Nabil Abdel Azim

Date of Birth: 12/11/1986

First University Degree: B.Sc. & Ed., May 2007

Degree: Master of Teacher's Preparation in Science

(Inorganic Chemistry)

Department: Chemistry

Faculty: Education

Name of university: Ain Shams

Approval Sheet

Synthesis and characterization of some metal complexes containing the chromone moiety

Supervisors	Signature
Prof. Ali Mahmoud Taha Professor of Inorganic Chemistry, Faculty of I	Education, Ain Shams University.
Prof. Dr. Magdy Shebl Saleh Inorganic Chemistry, Faculty of Education, Ai	Professor of n Shams University.
Dr.Omima Mohamed Ibrahim Adly Ass. Professor of Inorganic Chemistry, Faculty	
	istry Department M. Mashaly
•••••	••••••

Higher studies

The thesis was approved Approved date //2018

Approved by Council of Faculty Approved by Council of University

Date / /2018 Date / /2018

Acknowledgement

Thanking the most powerful and merciful Allah, I'd like to thank my dear professors, Prof. Dr. Ali Mahmoud Taha (Prof. of Inorganic Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University), Prof. Dr. Magdy Shebl Saleh (Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University) and Dr. Omima Mohamed Ibrahim Adly (Assistant Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University) for Suggesting the point of this work and continuous guidance throughout all the stages of this research.

I wish to express my thanks to **Prof. Dr. M. M. Mashaly**, (Head of the Chemistry Department, Faculty of Education, Ain Shams University) and **Prof. Dr. A. Taha** (formar Head of the Chemistry Department, Faculty of Education, Ain Shams University) for facilities provided during the course of research work.

Also I'm thankful to all members of the staff in the Chemistry Department for their faithful cooperation.

Noha Nabil Abdel Azim

Contents

List of Figures List of Tables List of Schemes	i v vi
List of Abbreviations	ix
Abstract Chapter I	
Literature Survey	
Literature Survey On The Metal Complexes Containing The Chromone Moiety.	
Chapter II	
Experimental	
(A) Materials	45
(B) Preparation of 3-Formylchromone	45
(C) Synthesis of The Transition Metal Complexes	46
(i) Synthesis of $[(L)_2Cu(OAc)_2] \cdot 0.5H_2O$ (1)	46
(ii) Synthesis of $[(L)_2Cu(8-HQ)]NO_3 \cdot 0.5$ MeOH (7)	46
(iii) Unsuccessful Trials	47
(D) Quantitative Analyses of Metal Cations by EDTA	47
(i) Determination of copper(II) and nickel(II)	47
(ii) Determination of cobalt(II)	47
(iii) Determination of cadmium(II) and zinc(II)	48
(E) Physical Measurements	48
(i) FT-IR Spectra	48
(ii) Electronic Spectra	48
(iii) H-NMR Spectra	48
(iv) Mass Spectra(v) Elemental Analyses	49 49
(vi) Magnetic Measurements	49
(vii) Molar Conductance	49
(viii) Thermal Gravimetric Analysis (TGA)	50
(ix) ESR Spectra	50
(x) Melting Points	50
(xi) Biological Activity	50
(xii) Theoretical background of molecular modeling	50

50

Chapter III

Results And Discussion

5.1. IR Spectra	
3.2. Conductivity Measurments	61
3.3. Magnetic Moment Measurements And Electronic Spectra	
3.4. ESR Spectra	
3.5. ¹ HMR Spectra	
3.6. Thermal Analysis	64
3.7. Mass Spectra	
Chapter IV	
Biological Activity	125
Chapter V	
Molecular Orbital Calculations	140
Summary	

References

List of Figures

Figure No.	Title	Page
Figure 1.1	ORTEP view of Zn(II) complex (a) and Ni(II) complex (b)	7
Figure 1.2	ORTEP drawing of Sm(III) complexes	10
Figure 1.3	The structure of complex	37
Figure 1.4	ORTEP view of complex 1	41
Figure 3.1	IR spectrum of the ligand	85
Figure 3.2	IR spectrum of [(L) ₂ Cu(OAc) ₂].0.5H ₂ O	85
Figure 3.3	IR spectrum of [(L) ₃ Cu](NO ₃) ₂ .MeOH	86
Figure 3.4	IR spectrum of [(L) ₂ Cu(H ₂ O) ₂](ClO ₄) ₂	86
Figure 3.5	IR spectrum of [(L) ₂ Cu(8-HQ)]NO ₃ .0.5MeOH	87
Figure 3.6	IR spectrum of [(L)Cu(Phen)(H ₂ O) ₂]NO ₃ .4H ₂ O	87
Figure 3.7	IR spectrum of [(L) ₂ Ni(OAc) ₂].H ₂ O	88
Figure 3.8	IR spectrum of [(L) ₃ Ni](NO ₃) ₂ .0.5MeOH	88
Figure 3.9	IR spectrum of [(L) ₂ Ni(H ₂ O) ₂](ClO ₄) ₂ .H ₂ O	89
Figure 3.10	IR spectrum of [(L) ₂ NiCl ₂ (H ₂ O) ₂]	89
Figure 3.11	IR spectrum of [(L) ₂ Co(OAc) ₂].1.5H ₂ O	90
Figure 3.12	IR spectrum of [(L)Co(8-HQ)]NO ₃ .1.5 H ₂ O	90
Figure 3.13	IR spectrum of [(L) ₂ Zn(OAc) ₂].H ₂ O	91
Figure 3.14	IR spectrum of [(L)Zn(SO ₄)(H ₂ O)].6H ₂ O	91
Figure 3.15	IR spectrum of [(L)Zn(8-HQ) ₂].5 H ₂ O	92
Figure 3.16	IR spectrum of [(L) ₂ Cd(8-HQ)]NO ₃	92
Figure 3.17	Relationship between the bathochromic shift of vCHO versus the Lewis basicity of anions (DNx) taken from ref 85.	93
Figure 3.18	Electronic spectra of some representative copper(II) complexes (3, 4, 5, and 9) as Nujol mull	94
Figure 3.19	Electronic spectra of some representative nickel(II) complexes (10, 11, 12, 13, 14 and 15) as Nujol mull	95
Figure 3.20	Electronic spectra of some representative cobalt(II) complexes (16, 17, 18 and 20) as Nujol mull	96

	T	
Figure	X-band ESR spectra of the complexes A:	97
3.21	$[(L)Cu(SO_4)(H_2O)_2]$ (3),	
	and B: $[(L)Cu(Br)_2)] \cdot 0.5H_2O(6)$	
Figure	¹ H-NMR spectra of [(L)CdCl ₂ (MeOH) ₂] in (DMSO-d ₆)	98
3.22		
Figure	¹ H-NMR spectra of [(L) ₂ Cd(8-HQ)]NO ₃ in (DMSO-d ₆)	98
3.23		
Figure	TGA-DrTGA curves of [(L) ₂ Cu(OAc) ₂].0.5H ₂ O	99
3.24		
Figure	TGA-DrTGA curves [(L)CuCl ₂ (H ₂ O) ₂]·0.5H ₂ O	99
3.25		
Figure	TGA-DrTGA curves of [(L)Ni(8-HQ) ₂].1.5H ₂ O	100
3.26	(7)	
Figure	TGA-DrTGA curves of	100
3.27	[(L)Ni(Phen)(H ₂ O)(MeOH](NO ₃) ₂	100
Figure	TGA-DrTGA curves of [(L) ₂ Co(OAc) ₂].H ₂ O	101
3.28		101
Figure	TGA-DrTGA curves of [(L)Co(8-HQ)]NO ₃ .1.5 H ₂ O	101
3.29	10A-D110A curves of [(E)Co(o-fig)]1103.1.3 1120	101
	Coats-Redfern plots for [(L) ₂ Cu(OAc) ₂]·0.5H ₂ O (1),	102
Figure 3.30	where $Y = \ln[-\ln (1-\alpha)/T^2]$	102
		102
Figure	Coats-Redfern plots for $[(L)CuCl_2(H_2O)_2] \cdot 0.5H_2O$ (5),	103
3.31	where $Y = \ln[-\ln (1-\alpha) / T^2]$	104
Figure	Coats-Redfern plots for [(L)3Ni](NO ₃) ₂ ·0.5MeOH (11),	104
3.32	where $Y = \ln[-\ln (1-\alpha) / T^2]$	101
Figure	Coats-Redfern plots for [(L)Ni(8-HQ) ₂]·1.5H ₂ O (14),	104
3.33	where $Y = \ln[-\ln (1-\alpha) / T^2]$	105
Figure	Coats-Redfern plots for	105
3.34	$[(L)Ni(Phen)(H_2O)(MeOH)](NO_3)_2$ (15), where Y =	
	$\ln[-\ln (1-\alpha) / T^2]$	
Figure	Coats-Redfern plots for $[(L)Co(8-HQ)_2]\cdot 1.5H_2O$ (19),	106
3.35		
	where $Y = \ln[-\ln (1-\alpha) / T^2]$	
Figure	Mass spectrum of the complex [(L) ₂ Cu(OAc) ₂]·0.5H ₂ O	107
3.36		10,
5.50	(1)	
Figure	Mass spectrum of the complex[(L) ₃ Cu](NO ₃) ₂ ·MeOH	107
3.37	(2)	107
Figure	Mass spectrum of the complex	108
3.38		100
3.30	$[(L)CuCl_2(H_2O)_2]\cdot 0.5H_2O$ (5)	
Figure	Mass spectrum of the complex [(L) ₂ Cu(8-	108
3.39	HQ)]NO ₃ ·0.5MeOH (7)	100
Figure	Mass spectrum of the complex $[(L)_2NiCl_2(H_2O)_2]$ (13)	109
3.40	141835 spectrum of the complex [(L)2141C12(112O)2] (13)	109
	Mass spectrum of the complex	109
Figure	Mass spectrum of the complex $[(L)Ni(Phen)(H_2O)(MeOH)](NO_3)_2$ (15)	109
2 / 1 1		110
3.41		1110
Figure	Mass spectrum of the complex	110
Figure	[(L)Zn(Phen)(OAc) ₂]· $6H_2O$ (21)	

Figure	Mass spectrum of the complex [(L)Zn(8-HQ) ₂]·5H ₂ O	110
3.43	(23)	
Figure	Antimicrobial activity of the ligand and its metal	135
4.1	complexes against Gram - negative bacteria	
Figure	Antimicrobial activity of the ligand and its metal	136
4.2 Figure	complexes against Gram - positive bacteria Antimicrobial activity of the ligand and its metal	137
4.3	complexes against yeasts and fungi	137
Figure 4.4	Correlation between the electrondonicity (ED) and the normalized bioactivity toward Bacillus subtilis (G+2) as Gram-positive bacteria.	138
Figure 4.5	Linear correlation of Egab versus the normalized bioactivity of compounds toward the Gram positive bacteria (G+2)	139
Figure 5.1	Optimized structures of [(L)Cu(SO ₄)(H ₂ O) ₂] (3) using Hyperchem 7.52 at PM3 level	169
Figure	Optimized structures of [(L)CuCl ₂ (H ₂ O) ₂]·0.5H ₂ O (5)	169
5.2	using Hyperchem 7.52 at PM3 level	
Figure	Optimized structure of [(L) ₂ Ni(H ₂ O) ₂](ClO ₄) ₂ ·H ₂ O	170
5.3	using Hyperchem 7.52 at PM3 level	
Figure	Optimized structure of [(L) ₃ Ni](NO ₃) ₂ ·0.5MeOH using	171
5.4	Hyperchem 7.52 at PM3 level	
Figure 5.5	Optimized structure of [(L) ₂ NiCl ₂] using Hyperchem 7.52 at PM3 level	172
Figure 5.6	Optimized structure of [(L)Ni(Phen)(H ₂ O)(MeOH)](NO ₃) ₂ using Hyperchem 7.52 at PM3 level	173
Figure 5.7	Optimized structure of [(L) ₂ Co(OAc) ₂].1.5H ₂ O ₂ using Hyperchem 7.52 at PM3 level	174
Figure 5.8	Optimized structure of [(L) ₂ CoCl ₂] ₂ using Hyperchem 7.52 at PM3 level	175
Figure	Optimized structure of [(L)Co(8-HQ) ₂].1.5H ₂ O ₂ using	176
5.9	Hyperchem 7.52 at PM3 level	
Figure	Optimized structure of [(L)Co(Phen)(MeOH) ₂](NO ₃) ₂	177
5.10	using Hyperchem 7.52 at PM3 level	
Figure	Relationship of ELUMO versus the extent of the IR	178
5.11	bathochromic shift of the formyl group.	

List of Tables

Table	Title	Page
No.		
Table	Analytical and physical data of the metal complexes	111
3.1	of the ligand; 3-formylchromone	
Table	Characteristic IR spectral data of the ligand and its	115
3.2	complexes	
Table	Electronic spectra, magnetic moments and molar	118
3.3	conductivity data of the ligand and its complexes	
Table	ESR data of some copper(II) complexes at room	121
3.4	temperature	
Table	¹ H NMR spectral data of the ligand and some of its	121
3.5	metal complexes	
Table	Thermal analysis data of some metal complexes	122
3.6		
Table	Temperatures of decomposition and the kinetic	123
3.7	parameters of complexes	
Table	Antimicrobial activity of the ligand and its metal	132
4.1	complexes	
Table	Molecular orbital parameters of the ligand and its	155
5.1	metal complexes on the PM3 level	
Table	Molecular orbital parameters in details and	158
5.1 in	global reactivity of the binary and ternary metal	
details	complexes of chromone ligand using	
	Hyperchem 7.52 at the PM3 level.	
Table	Theoretical calculated the bond lengths (A) of the	160
5.2	Ligand (1) and its metal complexes on the PM3 level	
Table	Theoretical calculations of the charge density on the	163
5.3	coordinating centers of the binary and ternary metal	
	complexes of the ligand using Hyperchem 7.52 at the	
	PM3 level.	
Table	Open circuit voltage Voc of the binary and ternary	167
5.4	complexes of the ligand estimated by using	
	Hyperchem 7.52 at PM3 level	

List of Schemes

Scheme No.	Title	Page
Scheme 1.1	Synthesis of Schiff base ligand.	2
Scheme 1.2	The suggested coordination of central metal ion with the 4-oxo-4H-1-benzopyran-3-carboxaldehyde	3
Scheme 1.3	Proposed structures for metal complexes	4
Scheme 1.4	Synthetic route of the complexes R1, S1, R2, and S2	5
Scheme 1.5	Scheme of the ligand L with metal salts Cu(NO ₃) ₂ .3H ₂ O and Zn(NO ₃) ₂ .6H ₂ O	6
Scheme 1.6	The preparation route of chromone-3-carbaldehyde thiosemicarbazone (L)	7
Scheme 1.7	The synthesis of 6-Hydroxy chromone-3-carbaldehyde thiosemicarbazone ligand	8
Scheme 1.8	Proposed structure of (4-oxo-4H-chromen-3-yl)methylene benzohydrazide (L)	9
Scheme 1.9	The synthesis of 6-hydroxychromone-3-carbaldehyde benzoylhydrazone ligand	10
Scheme 1.10	The suggested structure of the complex	11
Scheme 1.11	The preparation of 7-methoxychromone-3-carbaldehyde-(4'-hydroxy) benzoyl hydrazone (L).	11
Scheme 1.12	Preparation route of 6-hydroxy chromone-3- carbaldehyde-(4'-hydroxy chromone)benzoyl hydrazone (H3L)	12
Scheme 1.13	The possible structure of the complexes	13
Scheme 1.14	Proposed structure of metal(II) complexes	14
Scheme 1.15	The synthesis of (6-ethoxychromone-3-carbaldehyde benzoyl hydrazone) ligand	15
Scheme 1.16	The zinc complexes of these sulfonamidese	16
Scheme 1.17	Chromone-3-carboxaldehyde-4- phenylthiosemicarbazone (HCPT) and its metal complexes	17
Scheme 1.18	Structure of 2-oxo-N'-(4-oxo-4H-chromen-3-yl)methylene)-2-(phenylamino)acetohydrazide (H ₂ L)	18
Scheme 1.19	Structure of complexes	19
Scheme 1.20	The proposed structures of metal complexes	21
Scheme 1.21	Suggested structure of the Ln(III) complexes	22
Scheme 1.22	Schiff base ligand (HL).	23

Scheme	Proposed structure of the metal complexes.	23
1.23		
Scheme 1.24	Proposed structures of the metal complexes	25
Scheme 1.25	Structure of the ligand and its metal complexes	26
Scheme 1.26	Structure of the ligands	27
Scheme 1.27	The synthetic route of 3-carbaldehyde-chromone	28
Scheme 1.28	semicarbazone (L) Synthesis of Schiff base ligands	28
Scheme 1.29	Structure of Cu(II) complexes	29
Scheme 1.30	Aminochromone derivatives	29
Scheme 1.31	Synthesis of the Zn(II) complexes with aminochromone derivatives	30
Scheme 1.32	The synthesis of copper(II) complexes with 5-amino-8-methyl-4H-benzopyran-4-one (1)	31
Scheme 1.33	Preparation route of Ethylenediiminobi(6-hydroxychromone-3-carbaldehyde) schiff-base ligand	32
Scheme 1.34	Preparation of complexes 4a and 4b of the ligand 5,7-dihydroxychromone-2-carboxylic acid	32
Scheme 1.35	Chromone Schiff bases	33
Scheme 1.36	Synthetic route of chromone-3-carbaldehyde-(2´-hydroxy) benzoyl hydrazone	34
Scheme 1.37	Structure of the Schiff base HL Ligand	35
Scheme 1.38	Representative structures of the 1:1 (M:L) metal complexes of the HL ligand.	35
Scheme 1.39	Representative structures of the 1:2 (M:L) metal complexes of the HL ligand	36
Scheme 1.40	The synthesis of chromone Schiff base ligand	36
Scheme 1.41	Schematic representation of synthesis of complexes 1-3	38
Scheme 1.42	Synthesis of the hydrazone ligand, H2L	39
Scheme 1.43	The chemical structure of the ligand and its metal complexes (1-4).	39
Scheme 1.44	Synthesis of nickel(II) 4-chromone-N-substituted thiosemicarbazone complexes	40
Scheme 1.45	The synthetic pathway for the ligand	42
Scheme 1.46	The proposed structures of the complexes	42
Scheme 1.47	Synthetic pathway for the ligand.	43
Scheme 1.48	proposed structure of complexes 1-6	44

Scheme	Synthesis of 3-formylchromone	46
2.1		
Scheme	Structure of auxiliary ligands; 8-hydroxyquinoline,	46
2.2	1,10-phenanthroline and 2,2'-bipyridyl	
Scheme	Thermal degradation pattern of complex (5),	66
3.1	[(L)CuCl ₂ (H ₂ O) ₂].0.5H ₂ O, in the range of 30-336 °C	
Scheme	Thermal degradation pattern of complex (15),	66
3.2	[(L)Ni(Phen)(H2O)(MeOH](NO3)2, in	
	the range of 42-336 °C	
Scheme	Reactions of the ligand with Cu(II) salts	84
3.3		
Scheme	Reactions of the ligand with Cu(NO ₃) ₂ .3H ₂ O with	85
3.4	auxiliary ligands	

List of Abbreviations

Hep-G2	Human hepatocelluar carcinoma
LD50	Lethal dose
TEM	Transition electron microscope
EAC	Ehrlich Ascites Carcinoma
MCF-7	Human breast cancer cell line
DPPH	2,2' Diphenyl-1-picrylhydrazyl
EDTA	Ethylene diamine tetraacetic acid
DMSO	Dimethylsulfoxide
TGA	Thermal gravimetric analysis
DrTGA	Derivative thermal gravimetric analysis
ΔS	Entropy change
ΔΗ	Enthalpy change
ΔG	Free energy change
8-HQ	8-Hydroxyquinoline
Phen	1,10-Phenanthroline
Вру	2,2'-Bipyridyl
AcOH	Acetic acid
α	Weight loss
E_a	Heat of activation
TG	Thermogram
R	Universal gas constant (8.3144 J mol ⁻¹ k ⁻¹)
A	Pre-exponential factor
Φ	Heating rate
r	Correlation coefficient
k	Boltzman's constant (1.388×10 ⁻²³ J K ⁻¹)

Name: Noha Nabil Abdel Azim

Title: Synthesis and characterization of some metal complexes containing the

chromone moiety

Submitted to: Chemistry Department, Faculty of Education, Ain

Shams University

Abstract

Reactions of 3-formylchromone with different salts of copper(II), nickel(II), cobalt(II), zinc(II) and cadmium(II) ions afforded binary complexes. Also, ternary complexes were synthesized by reaction of the ligand with these metal ions in the presence of secondary ligands: [8-hydroxyquinoline, 1,10-phenanthroline and 2,2'bipyridyl]. The structures of the newly prepared complexes were identified by elemental analyses, IR, electronic, mass, ¹H-NMR and ESR spectra as well as molar conductivity, magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The ligand acts as a neutral bidentate ligand and the metal complexes exhibited octahedral and square planar geometrical arrangements. The obtained complexes include neutral and cationic mononuclear complexes with different molar ratios; 1:3, 1:2 and 1:1; M:L for binary complexes and 1:2:1, 1:1:1 and 1:1:2; M:L:L' for ternary complexes. Kinetic parameters (Ea, A, Δ H, Δ S and Δ G) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data. The ligand and its metal complexes showed antibacterial activity towards Gram-positive bacteria, Gram-negative bacteria, yeast and fungus.