

Faculty of Science Chemistry Department

Synthesis of New Organophosphorus Compounds of Anticipated Biological Activity by The Reaction of Some Phosphorus Reagents with Active Centers in Some Organic Compounds

A DISSERTATION

Presented By

Ewies F. E. Mahmoud

B.Sc., M. Sc. (Cairo University)

National Research Centre

For

The Degree of Doctor Philosophy of Science
(In Organic Chemistry)

(2012)

Faculty of Science Chemistry Department

Synthesis of New Organophosphorus Compounds of Anticipated Biological Activity by The Reaction of Some Phosphorus Reagents with Active Centers in Some Organic Compounds

A DISSERTATION

Presented By

Ewies F. E. Mahmoud

B.Sc., M. Sc. (Cairo University)

National Research Center

For

The Degree of Doctor Philosophy of Science
(In Organic Chemistry)

Submitted to

Department of Chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
2012

Faculty of Science Chemistry Department

APPROVAL SHEET OF THE THESIS

ENTITLED

Synthesis of New Organophosphorus Compounds of Anticipated Biological Activity by The Reaction of Some Phosphorus Reagents with Active Centers in Some Organic Compounds

THESIS ADVISORS	THESIS APPROVED
Prof. Dr. Amin F.M. Fahmy	
Prof. Dr. Leila S. Boulos	

Prof. Dr. Maged Shafeek Antonius

Head of Chemistry Department

CONTENTS

Acknowledgment	-
Abstract	-
Abbreviations	-
Summary of the Original Work in English	i
List of New Compounds have been obtained in thesis	i
1. INTRODUCTION	
Reactions of Phosphonium Ylides and Wittig-Horner Reagents with Certain	
Unsaturated Centers	1
1.1 Synthesis of Phosphorus Ylides	4
A) Phosphonium ylides	4
B) Wittig-Horner reagents	5
1.2 Reactions of Phosphonium Ylides and Wittig-Horner Reagents with Unsaturated	
Centers	7
1.2.1 Reactions with Carbon-Oxygen Systems	7
A) Reactions with Monocarbonyl Compounds	7
B) Reactions with Dicarbonyl Compounds	14
C) Reactions with Polycarbonyl Compounds	21
D) Reactions with α, β-Unsaturated Carbonyl Compounds	25
1.2.2 Reactions with Carbon-Carbon System	27
A) Reactions with Carbon-Carbon Double Bonds	27
B) Reactions with Cumulenes	28
C) Reactions with Carbon-Carbon Triple Bond.	30
1.2.3 Reactions with Carbon–Nitrogen Systems	32
1.2.3.1 Reactions with amines	32
1) With primary amines	32
2) With secondary amines	33
3) With tertiary amines	34
1.2.3.2 Reactions with Amides	34
1.2.3.3 Reactions with Thioamides	36
1.2.3.4 Reactions with Imines.	37
1) With Alkoxy and Alkylimines	37
2) With Quinoneimines	38

3) With Hydrazones	41
4) With Oximes	41
1.2.3.5 Reactions with Nitriles.	44
1.2.3.6 Reactions with Diazo-Compounds	45
1.2.3.7 Reactions with Azides	46
1.3 Selected Applications of Phosphonium Ylides	
A) Pharmacological application.	
1.4 Conclusion	50
2. Results and Discussion	
Uses of Oxazoles, Pyrazoles, and Quinones in Synthesis of New	
Organophosphorus Compounds of Anticipated Biological Activity	
<u>Part 1</u> : Uses of 1,3-Oxazoles in Synthesis of New Bisphosphonate and	
Bisphosphonic Acid Derivatives with Anticancer and Antischistosomal	
Activity	51
1. Reaction of 4-Benzylidene-2-phenyl-5(4H)-oxazolone	52
(i) With tetraethylmethanediylbis(phosphonate)	52
(ii) With Phosphonium Ylides	
(iii) With Trisdialkylaminophosphanes.	
Anticancer activity	
Antischistosomal activity	68
Conclusion	70
<u>Part 2</u> : Uses of Pyrazoles in Synthesis of Some New Triphenyl	
phosphanylidenes, Alkylphosphonates and Their Antimicrobial	
Activity	71
A. Uses of 3-Methyl-1-phenyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one	72
(i) Reaction of 3-Methyl-1-phenyl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-one with	
Carbethoxymethylenetriphenylphosphorane	72
(ii) Reaction of 3-Methyl-1-phenyl-1H-pyrazol-5(4H)-one with 1-Triphenyl	
phosphoranylidene-2-propanone	72
B. Uses of 4-benzylidene-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one	74
(i) Reactions of 4-benzylidene-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one	
with triethylphosphonoacetate.	74
(ii) Reactions of 4-benzylidene-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one	

with Trimethylphosphonoacetate	7
(iii)Reactions of 4-benzylidene-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one	
with diethyl(1,3-dioxoisoindolin-2-yl)methylphosphonate	7
(iv)Reactions of 4-benzylidene-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one	
with 2-methylallylphosphonate	7
(v) Reactions of 4-benzylidene-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one	
with diethyl p-tolylmethylphosphonate	8
C. Uses of 5-chloro-3-methyl-1-phenyl-1 <i>H</i> -pyrazole-4-carbaldehyde	8
(i) Reactions of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde	
with triethylphosphonoacetate.	8
(ii) Reactions of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde	
with trialkyl phosphites	8
Biological activity	8
Conclusion	8
<u>Part 3</u> : Uses of Quinones in Synthesis of New 1,2-Bis(diphenylphosphino)	
alkane Derivatives via Redox Reaction	8
A. Synthesis of 1,2-Bis(diphenylphosphino)ethane Derivatives via Redox	
Reactions	8
(i) Redox Reactions between 3,5 -Di-tert-butyl-o-benzoquinone and 1,2-	
Bis(diphenyl phosphino)ethane	8
(ii) Redox Reactions between Tetrabromo-o-benzoquinone and 1,2-	
Bis(diphenyl phosphino)ethane	9
(iii) Redox Reactions between Tetrachloro-o-benzoquinone and 1,2-	
Bis(diphenylphosphino)ethane	9
(iv) Redox Reactions between o-Naphthoquinone and 1,2-Bis(diphenyl	
phosphino) ethane	9
(v) Redox Reactions between Phenanthrenequinone and 1,2-Bis(diphenyl	
phosphino)ethane	9
(vi) Redox Reactions between acenaphthenequinone and 1,2-Bis(diphenyl	
phosphino) ethane	9
B. Synthesis of 1,2-Bis(diphenylphosphino)methane Derivatives via Redox	
Reactions	9
(i) Redox Reactions between <i>p</i> -Quinones and 1,2-Bis(diphenylphosphino)	

methane	99
(ii) Redox Reactions between 3,4-Dichloro-6,7-dicyano-o-benzoquinone	
and 1,2-Bis(diphenylphosphino)methane	99
Anticancer activity	101
Conclusion	104
3- Experimental part	105
Part 1	106
Part 2	124
Part 3	134
4- Supporting Information	
4.1 Selected Spectral Illustrations	144
5- References	173
6 - Summary of the Original Work in Arabic	Í

ACKNOWLEDGEMENT

I wish to record my appreciation to *Professor Amin Farouk Fahmy* Professor

of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams

University, for his interest, kind support, and continuous encouragement through this

work.

I would like to thank *Professor Leila S. Boulos*, Professor of Applied Organic

Chemistry, Chemical Industries Division, National Research Centre (NRC), for

suggesting the point, support and encouragement during the course of this work. Not

only has she taught me various aspects of conducting research but also other

professional skills, such as technical writing in a concise and organized style. Her

patience and help, in professional and daily life, will always be remembered and

appreciated.

I also wish to express my deep thanks to Professor Fatem Ramzy,

Parasitology Department, Theodor Bilharz Research Institute, Imbaba, Egypt, for

helping in the evaluation of the antischistosomal activity, to Professor Maysa

Moharam, Microbial Chemistry Department, National Research Centre for the

microbiological evaluation, and to Cancer Biology Department, National Cancer

Institute, Cairo University for the pharmacological evaluation.

I would like to thank all coworkers in the Group for providing a friendly and

sharing environment and making research enjoyable.

Ewies F. Ewies

Cairo 2012

MY Wife Azza

WHO ENCOURAGE ME

TO PROCEED

AT EACH & EVERY STEP

ABSTRACT

Name: Ewies Fawzy Ewies Mahmoud

Title: Synthesis of New Organophosphorus Compounds of Anticipated Biological Activity by The reaction of Some Phosphorus Reagents with Active Centers in Some Organic Compounds

Degree: Ph.D.

The thesis included three parts.

In the first part: the study has been focused on the synthesis of new bisphosphonate and bisphosphonic acid oxazolone derivatives with anticancer and N-(1-dialkylcarbamoyl)-2-phenylvinylbenzamides derivatives with antischistosomal activity. The reaction of 5(4H)-oxazolones with tetraethyl methanediylbis (phosphonate) afforded the new 1,1-bisphosphonate and 1,1-bisphosphonic acid derivatives. Moreover, 5(4H)-oxazolones reacted with Wittig reagents to give the corresponding heterocyclic products. Treatment of 5(4H)-oxazolones with trisdialkylaminophosphanes gave the corresponding N-(1-dialkylcarbamoyl)-2-phenylvinylbenzamides.

The second part has been extended to focus on uses of pyrazoles in synthesis of some new triphenylphosphanylidenes, alkylphosphonates and their antimicrobial activity. The reaction of 5(4H)-pyrazolone with phosphorus ylides afforded the new triphenylphosphanylidene alkanone derivatives. Moreover, its benzylidene reacted with *Wittig-Horner* reagents to give the corresponding dialkoxyphosphoryl, alkylphosphonate and heterocyclic products. Treatment of pyrazole-4-carbaldehyde with *Wittig-Horner* reagent and trialkyl phosphites gave the respective alkyl phosphonate adducts.

In the third part, the study has been focused uses of quinones in synthesis of new 1,2-bis(diphenylphosphino)alkanes derivatives *via* redox reaction. The reaction of 1,2-bis(diphenylphosphino)ethane with substituted *o*-benzoquinones afforded the new bis(6-hydroxycyclohexa-2,4-dienone) derivatives. Treatment of the same reagent with *o*-naphthoquinone, phenanthrenequinone and acenaphthenequinone gave the respective bis(diphenylphosphoryl)ethylidenes or diacenaphthylenone derivatives. On the other hand, *p*-quinones react with 1,2-bis(diphenylphosphino)methane to yield the corresponding 4-hydroxycyclohexa-2,5-dien-1-ones.

Mechanisms accounting for the formation of the new products are discussed. The biological activity of the newly synthesized compounds was also examined.

Keywords: *Wittig* Reagents, *Wittig-Horner* Reagents, Trialkyl Phosphites, Oxazolones, Pyrazoles, *o*-Quinones, *p*-Quinones, 1,1-Bisphosphonate, 1,1-Bisphosphonic Acid, Triphenylphosphanylidenes, 1,2-Bis(diphenylphosphino)alkanes, Anticancer Activity, Antischistosomal Activity, Antimicrobial Activity.

List of Abbreviations

¹³C NMR Carbon Nuclear Magnetic Resonance

¹H NMR Proton Nuclear Magnetic Resonance

³¹P NMR Phosphorus Nuclear Magnetic Resonance

b.r. Boiling range

DDQ Dicyanochloroquinone

DECP Diethylcyanophosphonate

DMSO Dimethylsulfoxide

Fig Figure

g Gram

h Hour

Hz Hertz

IC₅₀ Inhibitory concentration

IR Infrared

LDA Lithium diisopropylamine

m.p. Melting point

mg Milligram

min Minute

mL Milliliter

mmoles Millimoles

MS Mass Spectroscopy

MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide)

ppm Part Per Million

r.t. Room temperature

THF Tetrahydrofuran

TLC Thin Layer Chromatography

TPP Triphenylphosphane

TPPO Triphenylphosphane Oxide

WH Wittig-Horner Reagent

WHE Wittig-Wadsworth-Emmons

LIST OF NEW SYNTHESIZED COMPOUNDS

Compounds	Structure
Tetraethyl [2-(5-oxo-2-phenyl-4,5-dihydro-1,3-	0 0
oxazol-4-yl)-2-phenylethane-1,1-	$(C_2H_5O)_2P$
diyl]bisphosphonate 5a	H H
	N Ph
	Ph
Diethyl [2-(4,5-dihydro-5-oxo-2-phenyloxazol-4-	Ph O
yl)-2-phenylvinyl] phosphonate 6a	N OC_2H_5
	OC ₂ H ₅
	Ph 0 0
[2-(5-Oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-yl)-	=0
2-phenylethane-1,1-diyl]bis(phosphonic acid) 7a	$(HO)_2$ P $P(OH)_2$
	H
	Ph
	PhOOO
[2-(4-Nitrophenyl)-2-(5-oxo-2-phenyl-4,5-dihydro-	0 0
1,3-oxazol-4-yl)ethane-1,1-diyl]bis(phosphonic	$(HO)_2$ P $P(OH)_2$
acid) 7b	H + A
	N Y
	Ph O NO2
2-[(4,5-Dihydro-5-oxo-2-phenyloxazol-4-yl)-2-	Ph O
phenylvinyl] phosphonic acid 8a	
process of process and on	N OH OH
	Ph O O
[2-(4-Nitrophenyl)-2-(5-oxo-2-phenyl-4,5-dihydro-	NO ₂
1,3-oxazol-4-yl)ethenyl] phosphonic acid 8b	
	o o
	N—————————————————————————————————————
	OH OH
	Ph 0 0

Methyl 3-(4,5-dihydro-5-oxo-2-phenyloxazol-4-yl)-	Ph O
3-phenylacrylate 9a	Ph O O
Ethyl 3-(5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-	Ph O
yl)-3-phenylprop-2-enoate 9b	Ph OC ₂ H ₅
Methyl 3-[4-(dimethylamino)phenyl]-3-(5-oxo-2-	H ₃ C CH ₃
phenyl-4,5-dihydro-1,3-oxazol-4-yl)prop-2-enoate	
9c	Ph O O O
Ethyl 3-[3-(4-nitrophenyl)-3-(4,5-dihydro-5-oxo)-	NO_2
2-phenyloxazol-4-yl]acrylate 9d	OC ₂ H ₅
Methyl 2,6-diphenyl-5,6-dihydrofuro[3,2-	Ph Ph
d][1,3]oxazole-5-carboxylate 10a	Ph O O OCH ₃
Ethyl 2,6-diphenyl-5,6-dihydrofuro[3,2-	Ph
d][1,3]oxazole-5-carboxylate 10b	Ph O OC_2H_5
Methyl 6-[4-(dimethylamino)phenyl]-2-phenyl-5,6-	CH ₃
dihydrofuro[3,2-d][1,3]oxazole-5-carboxylate 10c	Ph O O O O O O O O O O O O O O O O O O O

Ethyl 6-(4-nitrophenyl)-2-phenyl-5,6-	NO ₂
dihydrofuro[3,2-d][1,3]oxazole-5-carboxylate 10d	
	N
	Ph O OC_2H_5
Methyl (5-oxo-2,7-diphenyl-5H-pyrano[3,2-	Ph
d][1,3]oxazol-6(7H)-ylidene)ethanoate 11a	0
	OCH ₃
	Ph O O O
Ethyl (5-oxo-2,7-diphenyl-5H-pyrano[3,2-	Ph
d][1,3]oxazol-6(7H)-ylidene)ethanoate 11b	$N \longrightarrow 0$
	OC_2H_5
	Ph O O O
Methyl {7-[4-(dimethylamino)phenyl]-5-oxo-2-	H ₃ C CH ₃
phenyl-5H-pyrano[3,2-d][1,3]oxazol-6(7H)-	
ylidene}ethanoate 11c	
	0
	OCH ₃
	Ph O O OCH3
2,4-Diphenyl-5,6-dihydro-4H-	N———Ph
cyclopenta[d][1,3]oxazole-5,6-dicarbonitrile 12	
	Ph O CN
	CN
2-[2-Phenyl-4-(3,4,5-trimethoxybenzylidene)-4,5-	OCH ₃
dihydro-1,3-oxazol-5-yl)but-2-enedinitrile 13	OCH ₃
	Ph O CN OCH ₃
Methyl [2-phenyl-4-(3,4,5-trimethoxybenzylidene)-	OCH ₃
1,3-oxazol-5(4H)-ylidene)ethanoate 14	
, , , ,,	N—OCH ₃
	Ph OCH ₃
	COOCH ₃