Updates in Perioperative Anaesthetic Management of Patients with Chronic Renal Failure

Essay

Submitted for partial fulfillment of Master Degree *In Anaesthesiology*

By

Ingi Mohamed Adel Ibrahim Sayed El Borgy *M.B.*, *B.Ch*

Under Supervision of

Prof. Dr. Azza Mohamed Shafik Abd El Magid Professor of Anaesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Hany Abd El Fattah Sayed Ahmed
Assistant Professor of Anaesthesiology and Intensive Care
Faculty of Medicine – Ain Shams University

Dr. Heba Abd El Azim Labib Ahmed Lecturer of Anaesthesiology and Intensive Care Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University

الجديد في المعالجة التخديرية للمرضى المصابين بالفشل الكلوى المزمن في فترة ما حول العمليات الجراحية

رسالية

توطئة للحصول على درجة الماجستير

في التخديس

مقدمة من:

الطبيبة/ إنجى محمد عادل إبراهيم سيد البرجى بكالوريوس الطب والجراحة جامعة عين شمس

تحت إشراف أ.د./ عزة محمد شفيق عبد المجيد أستاذ التخدير والرعاية المركزة

د./ هانى عبد الفتاح سبد أحمد أستاذ مساعد التخدير والرعاية المركزة

كلية الطب - جامعة عين شمس

كلية الطب – جامعة عين شمس

د./ هبة عبد العظيم لبيب أحمد مدرس التخدير والرعاية المركزة كلية الطب – جامعة عين شمس

كايـــــة الطب جامعة عين شمس

List of Abbreviations

AAG : α1- acid glycoprotein

ABP : Arterial blood pressure

ACE : Angiotensin converting enzyme

ACEIs : Angiotensin converting enzyme inhibitors

ADH : Antidiuretic hormone

ANP : Atrial natriuretic peptide

ARF : Acute renal failure

ATN : Acute tubular necrosis
ATP : Adenosine triphosphate

A-V : Atrio-ventricular

AVF : Arteriovenous fistula AVG : Arteriovenous graft

BCDFE : Bromochlorodifluoroethane

BUN : Blood urea nitrogen

CABG : Coronary artery bypass graft

CAD : Coronary artery disease

cGMP : Cyclic guanosine monophosphate

CHF : Congestive heart failure

CO : Cardiac output

COP : Colloid osmotic pressure

COX-2 : Cyclo-oxygenase 2
CP : Capsular pressure

CPB : Cardiopulmonary bypass

CRF : Chronic renal failure

CVP : Central venous pressure

DBP : Diastolic blood pressure

List of Abbreviations (Cont.)

DCT : Distal convoluted tubule

ECF : Extracellular fluidECG : ElectrocardiographyESRF : End-stage renal failure

ET : Endothelin

GCP : Glomerular capillary pressure GFP : Glomerular filtration pressure

GFR : Glomerular filtration rate

GIT : Gastrointestinal tract

GOP : Glomerular osmotic pressure

HD : Haemodialysis

HDL : High-density lipoproteinIAP : Intra-abdominal pressure

ICF : Intracellular fluidIVC : Inferior vena cava

LDL : Low-density lipoprotein

LH : Loop of Henle

NFP : Net filtration pressure

NKF K/DOQI: National Kidney Foundation- Kidney

Disease Outcome Quality Initiative

NMBAs : Neuromuscular blocking agents

NSAIDs : Non-steroidal anti-inflammatory drugs

PaO₂ : Arterial oxygen tension

PAWP : Pulmonary artery wedge pressure

PCT : Proximal convoluted tubule

List of Abbreviations (Cont.)

PORC : Postoperative residual curarization

PPV : Positive pressure ventilation

RBC : Red blood cell

RBF : Renal blood flow

ROS : Reactive oxygen-derived species

S.Creat : Serum creatinine

SBP : Systolic blood pressure

SIRS : Systemic inflammatory response syndrome

SLE : Systemic lupus erythematosus

SNP : Sodium nitroprusside

TEE : Trans-esophageal echo

VLDL : Very low-density lipoprotein

List of Tables

Table	
Table (1): Major causes of chronic renal failure	29

List of Figures

Figure		Page
Figure (1.1):	Surface anatomy of the kidneys	2
Figure (1.2):	(A) Frontal section of the right kidney showing its Internal structure and blood vessels (B) The magnified section of the kidney shows Structural and functional organization of the kidney	4
Figure (1.3):	Relations between blood vessels and tubular structures and differences between cortical and juxtamedullary nephrons	8
Figure (1.4):	Section of human kidney showing the major vessels That supply the blood flow to the kidney and the microcirculation of each nephron	10
Figure (1.5):	Summary of forces causing filtration by the glomerular capillaries	15
Figure (1.6):	The inter-relationships between the counter-current multiplier and the exchange mechanisms which operate in the renal medulla	20
Figure (1.7):	Renal regulation of acid-base balance	25

List of Contents

		Page
•	Introduction	1
•	Anatomical and physiological considerations of the kidney	2
•	Pathophysiology of chronic renal failure	28
•	Anaesthetic drugs and renal functions	42
•	Anaesthetic management of patients with chronic renal failure	62
•	Renal protection	90
•	Summary	110
•	References	112
•	Arabic summary	

الملخص العربي

يؤثر مرض الفشل الكلوى المزمن بشكل كبير على توازن الماء والأملاح في الجسم و على قدرة الجسم على الحفاظ علي درجة حموضة الدم. بالإضافة إلى أنه يؤدى إلى إنخفاض تركيز بعض الهرمونات التى تفرزها الكلى بالبلازما (مثل الإريثروبويتين) و إرتفاع تركيز بعض المواد الأخرى بالبلازما والتى كان يتم المتخلص منها عن طريق الكلى السليمة (مثل النواتج النيتروجينية لأيض البروتينات بالجسم). و تنعكس هذه العوامل السابقة سلبيا على اجهزة الجسم المختلفه مثل الجهاز الدوري, الجهاز التنفسي و الجهاز الهضمي. ويضاف الي ذلك ما يؤدى إليه هذا المرض من تأثير على التوصيل العصبي العضلي, اضطراب العناصر المختلفه بالدم, المناعه و قدرة الجسم على الأيض.

لذا فإن هدف طبيب التخدير أثناء المعالجة التخديرية لمرضى الفشل الكلوى المزمن فى فترة ما حول العمليات الجراحية هو تفادى تدهور المرض و التقليل من خطر الإصابة بالمضاعفات التى من الممكن أن تحدث لهؤلاء المرضى فى تلك الفترة, و هذه المهمة عادة ما تكون صعبة.

الإدارة السليمة لمرضى الفشل الكلوى المزمن فى فترة ما قبل العمليات الجراحية يجب أن تأخذ فى الإعتبار الإرتباط القوى بين مرض الفشل الكلوى المزمن وأمراض القلب والأوعية الدموية , الرؤية الجديدة لإضطراب العناصر المختلفة بالدم, التعامل السليم مع إرتفاع البوتاسيوم بالدم ، حموضة الدم , إرتفاع نسبة السكر في الدم ، الادوية المتعددة التي يتلقاها المريض بالإضافة إلى الإدارة التخديرية السليمة للمرضى الذين يخضعون للغسيل الكلوى.

الخطة التخديرية المتوازنة لهؤلاء المرضى أثناء العمليات الجراحية يجب أن تهتم بمعالجة السوائل في تلك الفترة و تراعى أن هؤلاء المرضى يعانون من تأخر تفريغ المعدة و زيادة الحموضة بها. بالإضافة إلى ذلك يجب أن تأخذ في الإعتبار الطريقة المختلفة التي يتعامل بها الجسم مع أدوية التخدير في ظل الإصابة بهذا المرض.

ويلعب أطباء التخدير دوراً هاماً في مجال حماية المرضى المصابين بإرتفاع فى تركيز البولينا و الكرياتينين بالدم أو الذين يعانون من أى مشاكل بالكلى من حدوث تدهور حاد لديهم في وظائف الكلى بعد العمليات الجراحية. وحماية الكلى تبدأ بالتعامل الصحيح مع المرضى قبل العملية الجراحية وهذا يشمل تحديد المرضى المعرضين لخطر الإصابة بهذا التدهور, تقييم حجم الدم الموجود بأوعيتهم الدموية, تحسين أحوالهم الصحية و مراجعة الأدوية التى يتلقاها المريض و إيقاف أية أدوية يمكن الإستغناء عنها و يمكن أن تتسبب فى قصور في وظائف الكلى.

وتتضمن إستراتيجيات حماية الكلى أشكال جديدة من العلاج و التى تهدف إلى زيادة نسبة الأكسجين الذى يصل إلى الكلى, منع حدوث أى إنقباض فى الأوعية الدموية الكلوية, التدخل للمحافظة على إنبساط الأوعية الدموية فى الكلى, المحافظة على المجارى البولية داخل الكلى مفتوحة , خفض إستهلاك الخلايا الكلوية للأكسجين و التخفيف من حدة الإصابات التى من الممكن أن تتعرض لها الكلى نتيجة لعودة سريان الدم بها بعد فترة إنقطاع عنها.

Acknowledgment

Thanks are all to ALLAH for blessing this work until it has reached its end.

I would like to express my deepest appreciation and gratitude to **Professor Dr. Azza Mohamed Shafik Abd El Magid,** Professor of Anaesthesiology and intensive care, Faculty of Medicine, Ain Shams University for her great support, close supervision and continuous encouragement through the whole work; it is a great honor to work under her supervision.

I stand in great debt to **Dr. Hany Abd El Fattah Sayed Ahmed**, Assistant Professor of Anaesthesiology and intensive care, Faculty of Medicine, Ain Shams University for his continuous care, guidance, supervision, and meticulous care throughout the whole work.

And I express my best feeling and thankful to **Dr. Heba Abd El Azim Labib Ahmed**, Lecturer of Anaesthesiology and intensive care, Faculty of Medicine, Ain Shams University for her kind advice and her great efforts throughout this work.

Finally, I send my deepest love and gratitude to my family and friends for their love, care and everlasting support.

Ingi Mohamed Adel Ibrahim Sayed El Borgy

Introduction

Chronic renal failure (CRF) is a multi-system disease. Patients have a complex medical history, take multiple and diverse types of drugs and frequently have severe systemic complications from the causes and/or effects of the disease. It is characterized by a progressive and irreversible decline in renal functions (*Allman and Wilson*, 2006).

Most drugs commonly employed during anaesthesia are at least partly dependent on renal excretion for elimination. In the presence of renal impairment, dosage modifications may be required to prevent accumulation of these drugs or their active metabolites in the body. Moreover, the systemic effects of azotaemia can potentiate the pharmacological actions of many of these drugs (*Morgan et al.*, 2006).

Anaesthetic management of patients with CRF present a clinical challenge related to altered drug handling, disturbances of fluid and electrolytes balance, difficulties with vascular access and the presence of associated co-morbid conditions (including diabetes mellitus, chronic hypertension, cardiovascular and cerebrovascular diseases). These problems must be carefully managed to prevent aggravation of preexisting disease (*Craig and Hunter*, 2008).

Protecting patients with elevated blood urea nitrogen (BUN) or serum creatinine (S.Creat) levels, or other evidence of preexisting renal problems from developing postoperative acute deterioration of their renal functions is an important part of the perioperative anaesthetic management of those patients (*Jones and Lee*, 2008).

Anatomy of the Kidney

Surface anatomy of the kidneys

The kidneys are retroperitoneal paired organs which lie on the posterior abdominal wall in upper parts of the paravertebral gutters, surrounded by adipose tissue. They lie opposite T12, L1, L2, L3 vertebrae. The right kidney (being pushed downwards by the liver) is about 1.5 cm lower than the left, so that the upper pole of the right kidney reaches the 12th rib and that of the left kidney reaches the 11th rib. The hilum of right kidney is just below and that of the left kidney is just above the transpyloric plane (L1) (Figure 1.1). The levels of the kidneys change during respiration and with changes in posture. Each kidney moves 2-3 cm in a vertical direction during the movement of the diaphragm (*Moore and Dalley*, 2005).

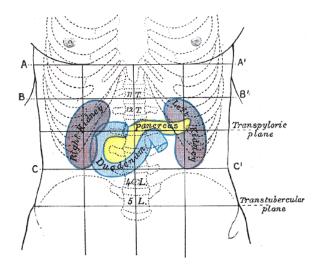
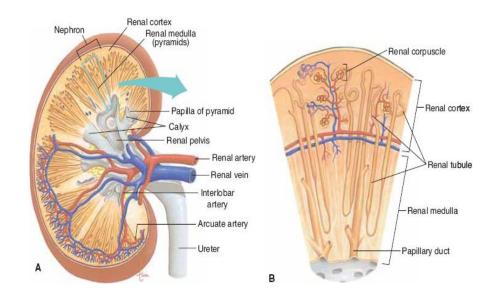


Figure (1.1): Surface anatomy of the kidneys (Standring, 2005)

Anatomical and Physiological Considerations of the Kidney


Gross anatomy

Each kidney has 2 poles, 2 surfaces and 2 borders. Since the long axis of each kidney is oblique and directed inferolaterally (parallel with the lateral border of the psoas major muscle) while the transverse axis is directed posteromedially, the upper pole is nearer to the midline than the lower pole and the usually described anterior and posterior surfaces of the kidney are facing anterolateral and posteromedial respectively. The lateral border is smooth and convex while the medial border is concave and presents a hilum at its middle. The hilum leads to a space within the kidney, called the sinus of the kidney (*Standring*, 2005).

General renal structure

The postnatal kidney has a thin capsule which is easily removed and composed of collagen-rich tissue with some elastic and smooth muscle fibers. The kidney itself can be divided into 2 zones (outer cortex and inner medulla) surrounding the sinus of the kidney. The outer cortex is pale and divided into cortical arches (forming caps over the bases of the medullary pyramids) and renal columns (extending between the medullary pyramids). The medulla is darker, deep to the cortex and is formed of 7-14 pyramids. Each pyramid has a base directed towards the cortex and an apex called renal papilla which opens into a minor calyx. Each pyramid with its cap of cortex form a lobe of the kidney (Figure 1.2) (*Standring*, 2005).

Anatomical and Physiological Considerations of the Kidney

Figure (1.2): (A) Frontal section of the right kidney showing its internal structure and blood vessels. (B) The magnified section of the kidney shows structural and functional organization of the kidney (Scanlon and Sanders, 2006).

Renal Microstructure

The kidney is composed of many tortuous, closely packed uriniferous tubules, bounded by a delicate connective tissue in which run blood vessels, lymphatics and nerves. Each tubule consists of the nephron, which produces urine, and the collecting duct, which completes the concentration of urine and through which urine passes out of the kidney to the ureter and urinary bladder (*Power and Kam*, 2008).

The nephron