

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

LATERAL TORSIONAL BUCKLING OF TAPERED I-BEAMS

By **ESAM ABDEL-KADER WALLY**

B. Sc., Ain Shams University1986 M. Sc., Ain Shams University1998

A Thesis Submitted in partial fulfillment for the requirements of the degree of Ph. D. in Structural Engineering

Supervised By

Professor

Adel H. Salem

Former Dean,

Prof. of Steel Structures

Ain Shams University

Professor **Abdelrahim K. Dessouki**Prof. of Steel Structure

Ain Shams University

Lecturer
Sherif M. Ibrahim
Structural Eng. Dept.
Ain Shams University

Cairo 2007

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Examiners Committee

Title of Thesis: Lateral Torsional Buckling of Tapered I-

Name: Esam Abdel- Kader Wally

Beams

Degree: Doctor of Philosophy		
<u>Committee</u>	<u>Sign.</u>	
1. Prof. Dr./ Dimos Polyzois	()
2. Prof. Dr./ Mahmoud Ibrahim Albanna	()
3. Prof. Dr./ Adel Helmy Salem	()
4. Prof. Dr./ Abdelrahim Khalil Dessouki	()
Date: / / 2007		

STATEMENT

This dissertation is submitted to Ain Shams University in partial

fulfillment for the requirements of the degree of Doctor of Philosophy in

Structural Engineering.

The work included in this thesis was carried out by the author in the

Structural Engineering Department, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at

any other University or Institution.

Date: /

/2007

Name: Esam Abdel- Kader Wally

Signature:

بسم الله الرحمن الرحيم

"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

صدق الله العظيم

البقرة ٣٢

Ain Shams University Faculty of Engineering Structural Engineering Department

Abstract of the Ph. D. Thesis submitted by: Eng. Esam Abdel- Kader Naguib Wally.

Title: Lateral Torsional Buckling of Tapered I- Beams

Supervisors:

Prof. Dr. Adel H. Salem P

Dr. Sherif M. Ibrahim

Prof. Dr. Abdelrahim K. Dessouki

ABSTRACT

Modern techniques of fabricating plated steel members have resulted in an increased use of tapered elements in steel structures. This is reflected on the material cost by reducing the member cross section in the low moment regions. Tapered beams are fabricated from an arbitrary numbers of flat plates joined by welding along their edges, so that the cross- section consists of a set of connected thin rectangles. When a tapered member does not have an adequate lateral support, its strength is governed by its resistance to torsional buckling modes, one of them is lateral torsional buckling

The present research aims to evaluate the lateral torsional buckling of tapered I- beams. This is achieved by adopting two different techniques; variational approach and finite element method. Variational approach to derive the Euler- Lagrange equations for the displacement components, the equilibrium equations defining instability phenomena and the corresponding limit conditions are obtained for thin, open cross-section, continually tapered beams. The variability of the cross-section along the span introduces an additional term for the expression of the tangential torsions due to variation of the shear centre position. A theoretical analysis was carried out on the basis of the positive definiteness of the second variation of the total potential energy which represents the stability criterion of the beams. Closed form solutions for different cases of tapered beams are presented.

As an alternative analysis method; finite element (F.E) model is presented for tapered I- beams. Material and geometric nonlinearities are incorporated in the F.E. model. Overall geometric imperfection, which causes lateral torsional buckling to I- beams, is incorporated in the model,

as well. Applications are carried out on variable cross-sections of tapered I- beams to calculate critical lateral torsional buckling stresses.

A parametric study is performed on simply supported tapered Ibeams with doubly symmetric or mono-symmetric cross sections. Several parameters such as tapering ratios (web tapering, flange tapering), spans, flanges thicknesses, and different types of loading are investigated and their effect on lateral torsional buckling is analyzed.

A set of imperical equations are proposed to predict the lateral torsional buckling load for different types of tapered I- beams.

Finally conclusions and recommendations for future work are presented.

Key words: tapering ratio, symmetric, mono-symmetric, lateral torsional buckling, I-beams.

Acknowledgements

The author would like to express his deep gratitude to professor **Adel Helmy Salem**, former dean, professor of steel structures, Ain Shams University, for his supervision, constant support, and precious advice.

The author is also very grateful to professor **Abdelrahim Khalil Dessouki**, professor of steel structures, Ain Shams University, for his inspiration, encouragement, excellent guidance and endless support through all phases of this research.

The author would like to express his thanks to Dr. **Sherif Mohamed Ibrahim**, lecturer, structural department, Ain Shams
University, for his fruitful supervision and friendship throughout the work
of this research.

The author offers special thanks to his parents, his wife, his sister, his daughters **Nourhan** and **Maha** for their continuous encouragement and support during the scope of this study.

List of Figures

Figure (2.1) Effect of moment distribution on beam elastic buckling,
<i>Trahair</i> and <i>Chan</i> (2002)
Figure (2.2) Effect of load location on beam elastic buckling, <i>Trahair</i> and
Chan (2002)7
Figure (2.3) Effect of end restraints on beam elastic buckling, Trahair
and <i>Chan</i> (2002)9
Figure (2.4) Cross section and residual stress, <i>Yoshida</i> (1973)10
Figure (2.5) Effect of axial load on elastic buckling, Trahair and Chan
(2002)
Figure (2.6) Warping and distortion at an I-section joint, Trahair
(1993)
Figure (2.7) Inelastic lateral buckling moments and strengths of beams,
Neathercot and Trahair(1976)22
Figure (2.8) Flange moments and shears in tapered I-beams Kitipornchai
and <i>Trahair</i> (1972)
Figure (2.9) Deflected shape of buckled tapered I-beams, Kitipornchai
and <i>Trahair</i> (1972)30
Figure (2.10) Flange moments and shears in tapered I-beams,
<i>Kitipornchai</i> and <i>Trahair</i> (1975)
Figure (2.11) Geometry of beam-column element: (a) Elevation; (b)
Section A-A <i>Bradford</i> and <i>Cuk</i> (1988)
Figure (2.12) Element deformation: (a) Displacements in plane of cross
section (b) Flange rotations; (c) Nodal displacements, Bradford and
Ronagh (1994)37
Figure (2.13) Limiting values of λ_L to enforce second buckling mode,
Bradford and Ronagh (1994)

Figure (2.14) Distortional buckling load relative to shear center loading,
Bradford and Ronagh (1994)
Figure (2.15) Effect of loading height on distortional buckling, Bradford
and Ronagh (1994)
Figure (2.16) Coordinate system and nodal degree of freedom, <i>Chang</i> and
Lee (1997)41
Figure (2.17) Buckling loads for double- taper simple I- beam under
central concentrated load <i>Chang</i> and <i>Lee</i> (1997)
Figure (2.18) Doubly symmetric web tapered I- section beam <i>LRFD</i>
(1999)42
Figure (2.19 a) Doubly symmetric web tapered I- section beam, Case 1,
<i>LRFD</i> (1999)43
Figure (2.19 b) Doubly symmetric web tapered I- section beam, Case 2,
<i>LRFD</i> (1999)44
Figure (2.19 c) Doubly symmetric web tapered I- section beam, Case 3,
LRFD (1999)45
Figure (2.19 d) Doubly symmetric web tapered I- section beam, Case 4,
LRFD (1999)45
Figure (3.1) Curvilinear Co-ordinates of general cross section54
Figure (3.2) Angle of rotation characteristics according to polar vectors e
& <i>i</i>
Figure (3.3) Displacements & rotation of deformed cross section55
Figure (3.4) Vectors a_1 , a_2 and a_3 of non-singular point of plane S 56
Figure (3.5) (a) Displacement components a_1 and a_3 of point A, (b)
Geometric functions of $r(\mu)$ and $q(\mu)$
Figure (3.6) Relation between $r(\mu)$ function and $\overline{\omega}(\mu)$

Figure (3.7) External forces and moments distributed on an open cross
section beam61
Figure (3.8) Illustrative example of cantilever with tapered I- cross
section adopted in μ Coordinates71
Figure (3.9) Distribution of $\overline{\omega}$ and ψ at $L(\xi)$ 73
Figure (3.10) Comparison between numerical results: rigidity variation
M_{Tl} / ϕ_l with respect to d_L / d_o
Figure (3.11) Comparison between numerical results with respect
to $\psi = 0$ and $\psi(\mu, \xi)$
Figure (3.12)Numerical results: variation of M_{Tl}/ϕ_l with respect to $n78$
Figure (3.13) Simply supported I-beams under applied end moments88
Figure (3.14) Simply supported I-beams with applied concentrated load
Q92
Figure (4.1) Applied moment M_{yl} on the beam at $x = l$, and its affect by
rotation angle ϕ
Figure (4.2) Doubly symmetric cantilever subjected to external force
Q116
Figure (5.1) Simply supported web tapered I-beam subjected to unequal
end moments
Figure (5.2) Doubly symmetric cantilever subjected to external force
Q131
Figure (5.3) Comparison between results provided by exact solution,
closed form equation & finite element method (COSMOS)
Figure (5.4) Relation between critical load and taper ratios for different
point of loading (Web- tapered Cantilever Subjected to concentrated
load)

Figure (6.1) Nonlinear quadrilateral-thin shell element140
Figure (6.2) Elasto-plastic strain hardening behavior141
Figure (6.3) Simply supported I-beams with applied concentrated load
P
Figure (6.4) Simply supported doubly symmetric flange tapered I-beam
subjected to concentrated load
Figure (6.5) Original and buckled shapes of different types of tapered I-
beams147
Figure (6.6) Stress diagram of maximum stresses on tapered I- beam in
lateral torsional buckling mode148
Figure (6.7) Simply supported doubly web tapered I-beam subjected to
concentrated load at mid- span
Figure (6.8) Effect of slenderness ratio on critical- to- yield moment of
tapered I- beams (Top flange loading)
Figure (6.9) Effect of slenderness ratio on critical- to- yield moment of
tapered I- beams (C.G. loading)156
Figure (6.10) Effect of slenderness ratio on critical- to- yield moment of
tapered I- beams (Lower flange loading)
Figure (6.11) Effect of web- taper ratio on critical- to- yield moment of
simply supported tapered I- beams ($\frac{d_o}{t_f}$ = 30.77)
Figure (6.12) Effect of web- taper ratio on critical- to- yield moment of
simply supported tapered I- beams $\left(\frac{d_o}{t_f} = 26.67\right)$
Figure (6.13) Effect of web-taper ratio on critical- to- yield moment of
simply supported tapered I- beams $\left(\frac{d_o}{t_f} = 23.53\right)$
Figure (6.14) Simply supported doubly- symmetric flange tapered I-beam

Figure (6.15) Effect of slenderness ratio on critical- to- yield moment of
flange- tapered I- beams (Top flange loading)176
Figure (6.16) Effect of slenderness ratio on critical- to- yield moment of
flange- tapered I- beams (C.G. loading)177
Figure (6.17) Effect of slenderness ratio on critical- to- yield moment of
flange- tapered I- beams (Lower flange loading)
Figure (6.18) Effect of flange- taper ratio on critical- to- yield moment of
flange- tapered I- beams $(\frac{d_o}{t_f} = 30.77)$
Figure (6.19) Effect of flange - taper ratio on critical- to- yield moment of
flange- tapered I- beams $(\frac{d_o}{t_f} = 26.67)$
Figure (6.20) Effect of flange - taper ratio on critical- to- yield moment of
flange- tapered I- beams $(\frac{d_o}{t_f} = 23.53)$
Figure (6.21) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 30.77)$
Figure (6.22) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 26.67)$
Figure (6.23) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 23.53)$
Figure (6.24) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 30.77)$
Figure (6.25) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 26.67)$

Figure (6.26) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 23.53)$
Figure (6.27) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $\left(\frac{d_o}{t_f} = 30.77\right)$
Figure (6.28) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 26.67)$
Figure (6.29) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam $(\frac{d_o}{t_f} = 23.53)$
Figure (6.30) Simply supported doubly symmetric web tapered I-beam
with mono- symmetric cross section subjected to concentrated load at
mid-span
Figure (6.31) Effect of slenderness ratio on critical- to- yield moment of
mono- symmetric tapered I- beam (Top flange loading)
Figure (6.32) Effect of slenderness ratio on critical- to- yield moment of
mono- symmetric tapered I- beam (lower flange loading)
Figure (6.33) Effect of web- taper ratio on critical- to- yield moment of
mono- symmetric tapered I- beam $\left(\frac{d_o}{t_f} = 30.77\right)$ 207
Figure (6.34) Effect of web- taper ratio on critical- to- yield moment of
mono-symmetric tapered I- beam $\left(\frac{d_o}{t_f} = 26.67\right)$
Figure (6.35) Effect of web-taper ratio on critical- to- yield moment of
mono-symmetric tapered I- beam $\left(\frac{d_o}{t_f} = 2353\right)$
Figure (6.36) Simply supported linearly- varied web- tapered I-beam
subjected to unequal end moments

Figure (6.37) Effect of slenderness ratio on critical- to- yield moment of
linearly- varied web- tapered I- beam subjected to end moments ratio,
$(\frac{M_1}{M_2} = -0.5)$ 222
Figure (6.38) Effect of slenderness ratio on critical- to- yield moment of
linearly- varied web- tapered I- beam subjected to end moments ratio,
$\left(\frac{M_1}{M_2} = -1.0\right)$ 223
Figure (6.39) Effect of web- taper ratio on critical- to- yield moment of
linearly- varied web- tapered I- beams $(\frac{d_o}{t_f} = 30.77)$
Figure (6.40) Effect of web- taper ratio on critical- to- yield moment of
linearly- varied web- tapered I- beams $(\frac{d_o}{t_f} = 26.67)$
Figure (6.41) Effect of web-taper ratio on critical- to- yield moment of
linearly- varied web- tapered I- beams $(\frac{d_o}{t_f} = 2353)$
Figure (6.42) Simply supported linearly- varied flange tapered I-beam
subjected to unequal end moments
Figure (6.43) Effect of slenderness ratio on critical- to- yield moment of
linearly- varied flange- tapered I- beam subjected to unequal end
moments ratio, $(\frac{M_1}{M_2} = -0.5)$
Figure (6.44) Effect of slenderness ratio on critical- to- yield moment of
linearly- varied flange- tapered I- beam subjected to unequal end
moments ratio, $(\frac{M_1}{M_2} = -1.0)$ 240

Figure (6.45) Effect of flange- taper ratio on critical- to- yield moment of
linearly- varied flange- tapered I- beams $\left(\frac{d_o}{t_f} = 30.77\right)$ 241
Figure (6.46) Effect of flange- taper ratio on critical- to- yield moment of
linearly- varied flange- tapered I- beams $\left(\frac{d_o}{t_f} = 26.67\right)$ 242
Figure (6.47) Effect of flange- taper ratio on critical- to- yield moment of
linearly- varied flange- tapered I- beams $(\frac{d_0}{t_f} = 2353)$ 243
Figure (6.48) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beam subjected to end moment, $\frac{M_1}{M_2} = -0.5$ and $(\frac{d_0}{t_f} = 30.77)254$
Figure (6.49) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beams subjected to end moment, $\frac{M_1}{M_2} = -0.5$ and $(\frac{d_0}{t_f} = 26.67)255$
Figure (6.50) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beams subjected to end moment, $\frac{M_1}{M_2} = -0.5$ and $(\frac{d_o}{t_f} = 23.53)256$
Figure (6.51) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beams subjected to end moment, $\frac{M_1}{M_2} = -1.0$ and $(\frac{d_0}{t_f} = 30.77)257$
Figure (6.52) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beams subjected to end moment, $\frac{M_1}{M_2} = -1.0$ and $(\frac{d_0}{t_f} = 26.67)258$
Figure (6.53) Effect of web/flange tapering on critical- to- yield moment
of tapered I- beams subjected to end moment, $\frac{M_1}{M_2} = -1.0$ and $(\frac{d_0}{t_f} = 23.53)259$
Figure (B.1) Prismatic beam with general cross section276
Figure (B.2) (a) Displacement components a_1 and a_3 of Point A.(b)
Geometric Functions of $r(\mu)$ and $q(\mu)$