AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING

LATERAL TORSIONAL BUCKLING OF
TAPERED I-BEAMS

By
ESAM ABDEL-KADER WALLY

B. Sc., Ain Shams University1986
M. Sc., Ain Shams University1998

A Thesis
Submitted in partial fulfillment
for the requirements of the degree of
Ph. D. in Structural Engineering

Supervised By

Professor Professor
Adel H. Salem Abdelrahim K. Dessouki
Former Dean, Prof. of Steel Structure
Prof. of Steel Structures Ain Shams University

Ain Shams University

Lecturer
Sherif M. Ibrahim
Structural Eng. Dept.
Ain Shams University

Cairo
2007



AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING

Examiners Committee

Name: Esam Abdel- Kader Wally

Title of Thesis: Lateral Torsional Buckling of Tapered I-
Beams

Degree: Doctor of Philosophy

Committee Sign.
1. Prof. Dr./ Dimos Polyzois ( )
2. Prof. Dr./ Mahmoud Ibrahim Albanna ( )
3. Prof. Dr./ Adel Helmy Salem ( )
4. Prof. Dr./ Abdelrahim Khalil Dessouki ( )

Date: [/ /2007



STATEMENT

This dissertation is submitted to Ain Shams University in partial
fulfillment for the requirements of the degree of Doctor of Philosophy in
Structural Engineering.

The work included in this thesis was carried out by the author in the
Structural Engineering Department, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at
any other University or Institution.

Date: [ 12007
Name: Esam Abdel- Kader Wally
Signature:



ans i ¢
A Craa ) ) avy

L"q.cié‘: 14
) Uiale La ) Lt als
Y dlilasa ) gdLa"™

"astal) aslal)

akaall A 3o

Y 5,



Ain Shams University
Faculty of Engineering
Structural Engineering Department

Abstract of the Ph. D. Thesis submitted by: Eng. Esam Abdel- Kader
Naguib Wally.
Title: Lateral Torsional Buckling of Tapered I- Beams

Supervisors:
Prof. Dr. Adel H. Salem Prof. Dr. Abdelrahim K. Dessouki
Dr. Sherif M. Ibrahim

ABSTRACT

Modern techniques of fabricating plated steel members have
resulted in an increased use of tapered elements in steel structures. This is
reflected on the material cost by reducing the member cross section in the
low moment regions. Tapered beams are fabricated from an arbitrary
numbers of flat plates joined by welding along their edges, so that the
cross- section consists of a set of connected thin rectangles. When a
tapered member does not have an adequate lateral support, its strength is
governed by its resistance to torsional buckling modes, one of them is
lateral torsional buckling

The present research aims to evaluate the lateral torsional buckling
of tapered I- beams. This is achieved by adopting two different
techniques; variational approach and finite element method. Variational
approach to derive the Euler- Lagrange equations for the displacement
components, the equilibrium equations defining instability phenomena
and the corresponding limit conditions are obtained for thin, open cross-
section, continually tapered beams. The variability of the cross-section
along the span introduces an additional term for the expression of the
tangential torsions due to variation of the shear centre position. A
theoretical analysis was carried out on the basis of the positive
definiteness of the second variation of the total potential energy which
represents the stability criterion of the beams. Closed form solutions for
different cases of tapered beams are presented.

As an alternative analysis method; finite element (F.E) model is
presented for tapered I- beams. Material and geometric nonlinearities are
incorporated in the F.E. model. Overall geometric imperfection, which
causes lateral torsional buckling to I- beams, is incorporated in the model,



as well. Applications are carried out on variable cross-sections of tapered
I- beams to calculate critical lateral torsional buckling stresses.

A parametric study is performed on simply supported tapered I-
beams with doubly symmetric or mono-symmetric cross sections. Several
parameters such as tapering ratios (web tapering, flange tapering), spans,
flanges thicknesses, and different types of loading are investigated and
their effect on lateral torsional buckling is analyzed.

A set of imperical equations are proposed to predict the lateral
torsional buckling load for different types of tapered I- beams.

Finally conclusions and recommendations for future work are presented.

Key words: tapering ratio, symmetric, mono-symmetric, lateral torsional
buckling, I-beams.
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