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ABSTRACT 

 

Modern techniques of fabricating plated steel members have 

resulted in an increased use of tapered elements in steel structures. This is 

reflected on the material cost by reducing the member cross section in the 

low moment regions. Tapered beams are fabricated from an arbitrary 

numbers of flat plates joined by welding along their edges, so that the 

cross- section consists of a set of connected thin rectangles. When a 

tapered member does not have an adequate lateral support, its strength is 

governed by its resistance to torsional buckling modes, one of them is 

lateral torsional buckling  

The present research aims to evaluate the lateral torsional buckling 

of tapered I- beams. This is achieved by adopting two different 

techniques; variational approach and finite element method. Variational 

approach to derive the Euler- Lagrange equations for the displacement 

components, the equilibrium equations defining instability phenomena 

and the corresponding limit conditions are obtained for thin, open cross-

section, continually tapered beams. The variability of the cross-section 

along the span introduces an additional term for the expression of the 

tangential torsions due to variation of the shear centre position. A 

theoretical analysis was carried out on the basis of the positive 

definiteness of the second variation of the total potential energy which 

represents the stability criterion of the beams. Closed form solutions for 

different cases of tapered beams are presented. 

As an alternative analysis method; finite element (F.E) model is 

presented for tapered I- beams. Material and geometric nonlinearities are 

incorporated in the F.E. model. Overall geometric imperfection, which 

causes lateral torsional buckling to I- beams, is incorporated in the model, 



 ii 

as well. Applications are carried out on variable cross-sections of tapered 

I- beams to calculate critical lateral torsional buckling stresses. 

 A parametric study is performed on simply supported tapered I- 

beams with doubly symmetric or mono-symmetric cross sections. Several 

parameters such as tapering ratios (web tapering, flange tapering), spans, 

flanges thicknesses, and different types of loading are investigated and 

their effect on lateral torsional buckling is analyzed. 

 A set of imperical equations are proposed to predict the lateral 

torsional buckling load for different types of tapered I- beams. 

 

Finally conclusions and recommendations for future work are presented. 

 

 

Key words: tapering ratio, symmetric, mono-symmetric, lateral torsional 

buckling, I-beams. 
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