

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULIC DEPARTMENT

UNCERTAINTY REDUCTION IN RUNOFF ESTIMATION USING RAINFALL DATA

A Thesis Submitted for Partial Fulfilment of the Requirements for the Degree of Doctorate of Philosophy in Civil Engineering

Ahmed Mohamed Lotfy Youssef Nasr

M.Sc., Hydro-informatics and Water Management (EUROAQUAE), [2011] B.Sc., Civil Engineering, Ain Shams University, [2004]

Supervised By

Prof. Dr Ahmed Ali Hassan

Professor of Environmental Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Prof. Dr Ashraf El-Moustafa

Professor of Engineering Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University

Prof. Dr Mahmoud Ibrahim Bakr

Professor of Engineering Groundwater Water Resources Research Institute National Water Research Center

Cairo, Egypt 2018

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULIC DEPARTMENT

UNCERTAINTY REDUCTION IN RUNOFF ESTIMATION USING RAINFALL DATA

Ahmed Mohamed Lotfy Youssef Nasr

M.Sc., Hydro-informatics and Water Management (EUROAQUAE), [2011] B.Sc., Civil Engineering, Ain Shams University, [2004]

Examiners Committee

	Signature
Prof. Dr Ayman Georges AwadAllah	
Professor of Water Resources Engineering	
Civil Engineering Department	
Faculty of Engineering, Fayoum University	
Prof. Dr Hoda Kamal Soussa	
Professor of Water Resources Engineering	
Irrigation and Hydraulics Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr Ahmed Ali Hassan	
Professor of Environmental Hydrology	
Irrigation and Hydraulics Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr Mahmoud Ibrahim Bakr	
Professor of Engineering Groundwater	
Water Resources Research Institute	
National Water Research Center	

Date: ---/2018

- To my parents who always give their full support at all times;
- To my sisters Azza and Mona who shared with me good and bad times;
- To my father in-law and mother in-law who gave me their happiness source;
- To my soulmate, beloved and treasured wife Aya who gives me inspiration, passion and dreams to life;
- To my smile, heart beat and lovely son Yassin who gives me hope, ambition and desire to continue.

Statement

This dissertation is submitted to Ain Shams University for partial fulfillment

of the requirements for the Degree of Doctor of Philosophy in Civil

Engineering.

The work included in this dissertation was carried out by the author of this

thesis in the department of Irrigation and Hydraulics, Faculty of Engineering,

Ain Shams University.

No part of this work has been submitted for a degree or a qualification at any

other university or institution.

Date:

Name: Ahmed Mohamed Lotfy Youssef Nasr

Signature:

Curriculum Vitae

Name: Ahmed Mohamed Lotfy Youssef Nasr

Date of Birth: February, 12th 1982

Current Position: Assistant Researcher, Water Resources Research Institute (WRRI), National Water Research Center (NWRC), Cairo, Egypt,

Awarded Degrees:

- ✓ M.Sc., Hydro-informatics and Water Management (EUROAQUAE), [2011]
- ✓ Diploma of Higher Education, Civil Engineering, Ain Shams University, [2007]
- ✓ B.Sc., Civil Engineering, Ain Shams University, [2004]

Short Biography:

Ahmed Lotfy was born on 12th of February, 1982, in Cairo, Egypt. He received his education at Tabry El-Hegaz secondary school in Cairo, Egypt. In June 2004, he graduated from Ain Shams University, obtaining his B.Sc. in civil Engineering. In June 2005, he joined the Water Resources Research Institute to start his career in water resources field. However his passion about structures analysis did not stop where in 2007, he obtained a diploma in civil engineering from Ain Shams University with emphasizing on structures analysis. In August 2009, he awarded a scholarship from the European Commission (Erasmus Munds grants) to study for master degree in Europe for full two years. In 2011, he obtained his M.Sc. in hydro-informatics and water management from EUROAQUAE consortium, submitting his M.Sc. research thesis to Newcastle University. In 2014, he started his PhD at Ain Shams University.

Ain Shams University Faculty of Engineering Irrigation and Hydraulic Department

Name: Ahmed Mohamed Lotfy Youssef Nasr

Thesis: Uncertainty Reduction in Runoff Estimation Using Rainfall Data

Abstract

In hydrological modeling, there are several sources of uncertainties associated with runoff estimation. Rainfall, which is the main input for these models, has a large impact on the runoff uncertainties. The objective of this research is to develop a monitoring rainfall network design method to reduce uncertainties associated with runoff estimation by reducing the uncertainty in rainfall data. This method depends on measuring the variations of the mean areal precipitation over any watershed of interest. Two sources of rainfall data were used; data recorded by existing rain gauges networks and data retrieved from GSMaP satellite product. This work includes two main parts; the assessment of reducing the number of rain gauges of predefined locations and developing the method for designing monitoring rainfall network. The differences between deterministic and geostatistical interpolation methods were investigated. Various statistical performance measures were used for achieving this assessment and selecting the optimal group(s) of rain gauges. Python scripts were developed and then used wherever needed throughout the work to complete the computations and to develop the method. Results reveal that the flexibility of the developed method is suitable for application in any ungauged watershed of interest and for any number of rain gauges according to the budget. The optimal rain gauge network design was achieved for various rain gauges number. Results also illustrate that the interpolation method does not affect the estimation of the mean areal precipitation for catchments having small areas. Additionally, both interpolation methods give similar results when the number of rain gauges increases over the watershed. The critical value of error increases by decreasing the probability of exceedance. By increasing the number of rain gauges in the investigated scenario, the values of resultant errors significantly decrease.

<u>Keywords:</u> Rainfall, Uncertainty, Runoff, Rain Gauge Network, Mean Areal Precipitation, GSMaP, Watier watershed, statistical measures, Python.

Supervisors:

Prof. Dr Ahmed Ali Hassan

Prof. Dr Ashraf El-Moustafa

Prof. Dr Mahmoud Ibrahim Bakr

Acknowledgement

All Praise is to Allah, Creator of the entire worlds.

Initially, I would like to express my deep thanks and sincere appreciations to the supervision committee; Prof. Dr. Ahmed Ali, Prof. Dr. Ashraf El-Mustafa and Prof. Dr. Mahmoud Bakr whom without their support, directions and guidance, this work would not be accomplished.

The appreciation is extended to Prof. Dr. Karima Attia, the director of the Water Resources Research Institute, who is always keen to challenge me to produce the best; to improve my scientific contributions at all scales and for providing the data.

I would like also to thank all my colleagues in the Water Resources Research Institute who helped me directly or indirectly during the period I had worked at the institute.

Special gratitude goes to both Dr Doaa Amin and Dr Islam El-Zayed who helped me a lot during the period of this work, wishing them all the success and bright future.

Last but not least, I would like to thank every person who directed or advised me during my whole life at work or anywhere else.

Table of Contents

Table of	Coı	ntents	i
List of F	igur	res	v
List of T	able	es	xi
List of A	bbr	eviations	xiii
List of S	ymb	ools	xv
Chapter	1	Introduction	1
1.1	Ba	ckground	1
1.2	Pro	blem definition	2
1.3	Aiı	n and objectives	4
1.4	Str	ucture of the thesis	5
Chapter	2	Literature Review	7
2.1	For	rms of precipitation	7
2.1.	1	Thermal convection (convectional precipitation)	8
2.1. pred		Frontal activity Conflict between two air masses (frontal action)	8
2.1.	3	Orographic lifting (orographic precipitation)	9
2.1.	4	Cyclonic (cyclonic precipitation)	9
2.2	Spa	atial Interpolation to Mean Areal Precipitation	9
2.2.	1	Description of the Interpolation methods	10
2.2.	2	Deterministic methods	10
2.2.	3	Geostatistical methods	11
2.3	Un	certainties in rainfall runoff modeling	15
2.4	Rai	in Gauge Networks Design	18
2.5	Rai	infall from Satellite Products	24
2.6	Su	mmary of literature and research gap	28
Chapter	· 3	Description of the Study Areas	31
3.1	Ov	erview on Sinai Peninsula Climate	31
3.1.	1	Location and Importance	31

3.1.2	Weather Description	32
3.1.3	Rainfall	33
3.1.4	Air temperature	34
3.1.5	Humidity	35
3.1.6	Summary	35
3.2 Mele	eha Sub-Catchment	35
3.2.1	Basin Description	35
3.2.2	Meteorological Characteristics	37
3.3 Wat	ier Catchment	38
3.3.1	Basin Description	38
3.3.2	Meteorological Characteristics	39
Chapter 4	Data Collection	43
4.1 Brie	fing	43
4.2 Rain	fall data from Rain Gauges measurements	44
4.2.1	Meleha Sub-Catchment	44
4.2.2	Watier watershed	46
4.3 Rain	fall data from Satellite product	48
4.3.1	Global Satellite Mapping of Precipitation (GSMaP_NRT Product	.49
4.3.2	Evaluation of GSMaP satellite products	51
Chapter 5	Methodology	59
5.1 Gene	eral	59
5.2 Part	I: Rain Gauges measurements	60
5.2.1	Scenarios of Predefined Locations of Rain Gauges	62
5.2.2	The MAP Calculation using Deterministic Methods	63
5.3 Part	II: GSMaP Satellite Product	63
5.3.1	GSMaP Satellite data preparation and accumulation	65
5.3.2	Random Scenarios formation for suggested networks	66
5.3.3 Methods	The MAP Calculation using Deterministic and Geostatistical	67
5.3.4	Development of rainfall network design method using Python	

5.	4	Runoff Estimation	.71
5.	.5	Statistical Performance measures	.72
	5.5.	The Root Mean Square Error (RMSE)	.72
	5.5.2	Mean Absolute Error (MAE)	.73
	5.5.3	Absolute Relative Error (RE)	.73
	5.5.4	Nash Sutcliffe Efficiency (NSC)	.73
	5.5.5	Mean error (BIAS)	.74
5.	6	Interpretation of Performance Measures	.74
5.	.7	Evaluation and Ranking	.75
5.	8	Tools used in Research	.75
	5.8.	ArcMap	.75
	5.8.2	Model Builder in ArcGIS	.76
	5.8.3	Python	.76
Cha	pter	6 Results and Discussion	.77
6.	1	Part (I): Using Rain Gauges Data	.77
	6.1.	Computation of the MAPs	.77
	6.1.2	Overall statistical performance measures	.80
	6.1.3	Probability of exceedance of estimated errors	.88
	6.1.4	Optimal combination of rain gauges in each scenario	.91
	6.1.5	The distribution of optimal rain gauges in the catchment	100
	6.1.0	Impact of the interpolation method on the MAP estimation	105
	6.1.	Results of runoff estimation	109
	6.1.8	Summary of Part (I)	115
6.	2	Part (II): Using GSMaP Satellite Product	115
	6.2.	The MAPs Calculations	115
	6.2.2	Semivariogram analysis	117
	6.2.3	Overall statistical performance measures	119
	6.2.4	Probability of exceedance of estimated errors	122
	6.2.5 distr	Influence of the number of generated random networks on error ibution	124

6.2.6	Design of the optimal rain gauges network	127
6.2.7	The spatial distribution of optimal network in the catchment.	128
6.2.8	Evaluation of existing rainfall network	131
6.2.9	Deterministic vs Geostatistical interpolation methods	132
6.2.10	Summary of Part (II)	135
Chapter 7	Conclusions and Recommendations	137
7.1 Su	mmary of the dissertation	137
7.2 Co	nclusions	139
7.2.1	Interpolation method, catchment area and network density	139
7.2.2	Number of random rain gauges networks	140
7.2.3	Rain Gauges Network design	140
7.3 Lin	nitations of the current research	141
7.4 Co	ntribution and Importance	142
7.5 Rec	commendations for future work	142
7.5.1	General	143
7.5.2	Further research	143
References		145
Appendix (A	A): Groups of Rain Gauges for Part (I)	155
Appendix (B	s): Developed Python Scripts	163
Appendix (C	C): Developed Models using Model Builder in ArcGIS	179

List of Figures

Figure (2-1): Various forms of precipitation (source: Brooks/Cole, Cengage
Learning)9
Figure (2-2): Example of semivariograms, exponential model, solid line and
empirical semivariogram, dots (source: http://pro.arcgis.com)14
Figure (2-3): Semivariogram parameters, illustrating Sill, Partial Sill, Range and
Nugget (source: http://pro.arcgis.com)
Figure (3-1): Location of Sinai Peninsula
Figure (3-2): Location of Meleha sub-catchment upstream Sudr watershed36
Figure (3-3): Meleha sub-catchment, showing rain gauges and elevations37
Figure (3-4): Location of Watir watershed
Figure (3-5): Number of rainfall events in each month over Watier Watershed40
Figure (3-6): Watier watershed, showing rain gauges and elevations40
Figure (4-1): Distribution of rain gauges network owned by the Water Resources
Research Institute (WRRI) in Egypt44
Figure (4-2): Sample of daily rainfall of GSMaP satellite product showed for Watier
watershed50
Figure (4-3): Linear relationship between rainfall values of rain gauges and retrieved
values from satellite product for all storms53
Figure (4-4): Linear relationship between rainfall values of rain gauges and retrieved
values from satellite product for each storm54
Figure (4-5): Linear relationship between rainfall values of rain gauges and retrieved
values from satellite product at the location of each rain gauge (W1, W2, W3, W4,
W5 and W6)55
Figure (4-6): Linear relationship between rainfall values of rain gauges and retrieved
values from satellite product at the location of each rain gauge (W8 and W9)56
Figure (4-7): Linear relationship between rainfall values of rain gauges and retrieved
values from satellite product after removing values of storm#557
Figure (5-1): Schematic chart for work methodology60
Figure (5-2): Schematic chart for tasks of part one
Figure (5-3): Schematic chart for tasks of part two
Figure (5-4): Selected cells and points and their distribution over Watier watershed
66
Figure (5-5): Flow chart of the rain gauge network designing method70
Figure (6-1): The statistical properties for RMSE of all combinations in each
scenario, for Meleha, showing on left the TPA and on right the IDW81
Figure (6-2): The statistical properties for RMSE of all combinations in each
scenario, for Watier, showing on left the TPA and on right the IDW82

Figure (6-3): The statistical properties for MAE of all combinations in each
scenario, for Meleha, showing on left the TPA and on right the IDW82
Figure (6-4): The statistical properties for MAE of all combinations in each
scenario, for Watier, showing on left the TPA and on right the IDW83
Figure (6-5): The statistical properties for NSC of all combinations in each scenario,
for Meleha, showing on left the TPA and on right the IDW84
Figure (6-6): The statistical properties for NSC of all combinations in each scenario,
for Watier, showing on left the TPA and on right the IDW85
Figure (6-7): The statistical properties for absolute RE of all combinations in each
scenario, for Meleha, showing on left the TPA and on right the IDW86
Figure (6-8): The statistical properties for absolute RE of all combinations in each
scenario, for Watier, showing on left the TPA and on right the IDW86
Figure (6-9): The statistical properties for BIAS of all combinations in each
scenario, for Meleha, showing on left the TPA and on right the IDW87
Figure (6-10): The statistical properties for BIAS of all combinations in each
scenario, for Watier, showing on left the TPA and on right the IDW88
Figure (6-11): The Exceedance probability in (%) of the RMSE for both watersheds,
left for Meleha and right for Watier89
Figure (6-12): The Exceedance probability in (%) of the MAE for both watersheds,
left for Meleha and right for Watier89
Figure (6-13): The Exceedance probability in (%) of the NSC for both watersheds,
left for Meleha and right for Watier90
Figure (6-14): The Exceedance probability in (%) of the RE for both watersheds, left
for Meleha and right for Watier90
Figure (6-15): The values of various statistical performance measures for Scenario
(1) for Meleha sub-catchment, Combinations are sorted based on RMSE values from
the smallest to the largest, left is TPA and right is IDW94
Figure (6-16): The values of various statistical performance measures for Scenario
(2) for Meleha sub-catchment, Combinations are sorted based on RMSE values from
the smallest to the largest, left is TPA and right is IDW94
Figure (6-17): The values of various statistical performance measures for Scenario
(3) for Meleha sub-catchment, Combinations are sorted based on RMSE values from
the smallest to the largest, left is TPA and right is IDW94
Figure (6-18): The values of various statistical performance measures for Scenario
(1) for Watier watershed, Combinations are sorted based on RMSE values from the
smallest to the largest, left is TPA and right is IDW95
Figure (6-19): The values of the first 15 of various statistical performance measures
for Scenario (2) for Watier watershed, Combinations are sorted based on RMSE
values from the smallest to the largest, left is TPA and right is IDW96

Figure (6-20): The values of the first 15 of various statistical performance measures
for Scenario (3) for Watier watershed, Combinations are sorted based on RMSE
values from the smallest to the largest, left is TPA and right is IDW96
Figure (6-21): The values of the first 15 of various statistical performance measures
for Scenario (4) for Watier watershed, Combinations are sorted based on RMSE
values from the smallest to the largest, left is TPA and right is IDW96
Figure (6-22): The values of the first 15 of various statistical performance measures
for Scenario (5) for Watier watershed, Combinations are sorted based on RMSE
values from the smallest to the largest, left is TPA and right is IDW97
Figure (6-23): The values of the first 15 of various statistical performance measures
for Scenario (6) for Watier watershed, Combinations are sorted based on RMSE
values from the smallest to the largest, left is TPA and right is IDW97
Figure (6-24): The values of the first 15 of various statistical performance measures
for Scenario (7) for Watier watershed, Combinations are sorted based on RMSE
values from the smallest to the largest, left is TPA and right is IDW97
Figure (6-25): Order of all combinations of all scenarios for the TPA sorted
according to the RMSE values from the smallest to the largest for Meleha sub-
catchment98
Figure (6-26): Order of all combinations of all scenarios for the IDW sorted
according to the RMSE values from the smallest to the largest for Meleha sub-
catchment99
Figure (6-27): Order of the first 30 combinations of all scenarios for the TPA sorted
according to the RMSE values from the smallest to the largest for Watier watershed
(for rain gauges number in each group see Appendices)99
Figure (6-28): Order of the first 30 combinations of all scenarios for the IDW sorted
according to the RMSE values from the smallest to the largest for Watier watershed
(for rain gauges number in each group see Appendices)100
Figure (6-29): The spatial distribution of optimal combination of rain gauges for
both TPA and IDW for Meleha sub-catchment, left is scenario (1) and right is
Scenario (2)
Figure (6-30): The spatial distribution of optimal combination of rain gauges for
scenario (3) for Meleha sub-catchment, left is TPA and IDW and right is IDW $\dots 101$
Figure (6-31): The spatial distribution of optimal combination of rain gauges for
scenario (1) for Watier watershed, left is TPA and right is IDW102
Figure (6-32): The spatial distribution of optimal combination of rain gauges for
scenario (2) for Watier watershed, left is TPA and right is IDW102
Figure (6-33): The spatial distribution of optimal combination of rain gauges for
scenario (3) for Watier watershed for both TPA and IDW103
Figure (6-34): The spatial distribution of optimal combination of rain gauges for
scenario (4) for Watier watershed, left is TPA and right is IDW103