

MODELING AND CONTROL OF STAND-ALONE PV SYSTEM BASED ON FRACTIONAL-ORDER PID CONTROLLER

By

Ahmed Mohsin Betti Alrikabi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Modeling and Control of Stand-Alone PV System Based on Fractional-Order PID Controller

By

Ahmed Mohsin Betti Alrikabi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision

of

Prof. Dr. M. A. Moustafa Hassan

Professor of Control Power System Electrical power and machines department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

MODELING AND CONTROL OF STAND-ALONE PV SYSTEM BASED ON FRACTIONAL-ORDER PID CONTROLLER

 $\mathbf{B}\mathbf{y}$

Ahmed Mohsin Betti Alrikabi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the Examining Committee

Prof. Dr. **Mohamed Ahmed Moustafa Hassan** (Thesis Advisor)

Prof. Dr. Ahmed Mohamed Fahim Saker (Internal Examiner)

Prof. Dr. Adel Abd-Almonem Abdullah Elsamahy (External Examiner) (Faculty of Engineering Helwan University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Ahmed Mohsin Betti Alrikabi

Date of Birth: 16/5/1993 **Nationality:** Iraqi

E-mail: <u>ahmedsmss22@gmail.com</u>

Phone:01020378843Address:Cairo, MaidaRegistration Date:1 / 03 /2016Awarding Date:/ /2018

Degree: Master of Science

Department Electric Power and Machines Engineering

Supervisors:

Prof. Dr. M. A. Moustafa Hassan

Examiners:

Prof. Dr. Mohamed Ahmed Moustafa Hassan (Thesis Main Advisor)

Prof. Dr. Ahmed Mohamed Fahim Saker (Internal Examiner)

Prof. Dr. Adel Abd-Almonem Abdullah Alsamahe (External Examiner)

Faculty of Engineering Helwan University

Title of Thesis:

Modeling and Control of Stand-Alone PV System Based on Fractional-Order PID Controller

Key Words:

PV stand-alone system, Maximum Power Point Tracking (MPPT), Fractional Order (FOPID), Particle Swarm Optimization (PSO), genetic algorithm (GA).

Summary:

This thesis presents modeling and control of a standalone photovoltaic (PV) system in which a battery is used as a backup source for controlling power between the source and the load. Study of the propose Configuration for Design of stand-alone PV system to provide electricity for the purposes required. An efficient energy management scheme for stand-alone PV system is elaborated. The proposed fractional order (FO) PID and PI based energy management in battery control system; scheme comprises of two control loops namely inner and outer loops to outperform a standalone PV system with satisfactory response. The main task of the inner control loop is to extract and track maximum power from a standalone PV system. Moreover, the outer control loop is equipped with the battery for controlling the power between the source and the load smoothly. Various scenarios include sun irradiance variations and load fluctuations are presented to demonstrate the theoretical analysis, effectiveness, and feasibility of the proposed energy management strategy. Comparison between FOPID and PID control, optimization techniques is employed to fine tune the proposed control loops by generating their optimal settings. The simulation results discover the feasibility of the system. Using A software simulation model developed in Matlab/Simulink

Acknowledgments

First thanks to Allah. Without his help and blessing, I would not have been able to finish this work. Then, I wish to express my sincere gratitude to my supervisor **Prof. Dr. M. A. Moustafa Hassan**. Encouraging me the and was introduce guidance and unlimited support to me during my work. His patience and kindness are greatly appreciated.

And **Dr. Mohammed Ibrahim & Eng. Mohammed Essa** for them continuous support of my thesis study and related research I am truly grateful to them for help me ability to complete the work. I would like to acknowledge the love, support and motivation I received from my family.

Table of Contents

	EDGMENTS	
	CONTENTS	
	BLESBLES	
	TURE.	
Chapter O	ne: Introduction	1
1.1.	Overview	
1.2.	Literature survey	
1.3.	Objectives of Thesis	
1.4.	Thesis Outline	
1.5.	Summary	
	-	
-	wo: Proposed Configuration For Design of Stand-Alone System	
2.1.	Introduction	
2.2.	Cost and Trends of PV Market Development.	
2.3.	Solar Energy in Iraq	
2.4.	Types of Solar PV System	
	2.3.1 Grid-Connected PV System.	
	2.3.2 Hybrid System	
	2.3.3 Standalone PV System	
2.5.	Electrical Demand	
2.6.	Angular Influence in Solar Radiation.	14
2.7.	Photovoltaic Geographical Information Survey (PVGIS) Website	
	2.7.1 Estimates PVGIS and Results of Solar.	
2.8.	PV arrays and battery banks.	
2.9.	Summary	2
Chapter T	hree: Description of System Components	22
3.1.	Overview	
3.2.	Description Photovoltaic System.	
3.3.	Photovoltaic Panels	
3.3.	3.3.1. Photovoltaic Cell	
	3.3.2. Photovoltaic Module.	
	3.3.3. Photovoltaic String.	
	3.3.4. Photovoltaic Array	
3.4.	PV Modeling	25
3.5.	P-V Characteristics	27
3.6.	Converters	29
	3.6.1. Boost Converter	
	3.6.2. Bidirectional (DC- DC) Converters	32
3.7.	Description of Battery	33
	3.7.1. Batteries Specification.	33
	3.7.2. Battery charging techniques	
	3.7.2.1. Constant Current Charging	34

		3.7.2.2.	Constant Voltage Charging	34
		3.7.2.3.	Two-Step Charging	35
		3.7.2.4.	Pulse charging	35
	3.7.3. Ba	tteries Electri	c Model	36
	3.7.4. Ba	ttery Model .	······································	38
3.8.	Three Phase	Inverter		41
3.9.	Filter			45
3.10.	Summary			45
	•			
_		_	s and Analysis4	
4.1.				
4.2.			racking (MPPT)	
			serve (P&O)	
	4.2.2. Inc	remental Co	nductance (IC)	49
4.3.	Battery Con	trol		51
4.4.	Control Tec	hniques		52
	4.4.1. PII	O Control Str	ategy	52
	4.4.2. Fra	ctional-Orde	r PID (FOPID)	53
4.5.	Controller Par	ameters Sele	ction	55
4.6.	Optimization .	Algorithms		55
	4.6.1. Par	ticle Swarm	Optimization (PSO)	56
	4.6.2. Ad	aptive Weigh	nted Particle swarm optimization (AWPSO)	59
	4.6.3. Ad	aptive Accel	eration Coefficients Particle Swarm Optimization	
				60
		-	ve Accelerated Coefficients Particle Swarm Optimization	61
	,	· · · · · · · · · · · · · · · · · · ·	hms (GA)	
		_	(CS)	
4.7.			`	
			uare of the Error	
			solute Magnitude of the Error.	
		_	ne Absolute Magnitude of the Error	
4.8.		_		
Charter E	•			
_			s and Discussion6	
5.1.			······································	
5.2.			······································	
5.3.	* *		Power Point Tracking (MPPT)	
		•	of Perturbs and Observes Technique	
- 4		-	of Incremental Conductance technique	
5.4.	-	•	ers	
5.5.	Summary			90
Chapter Si	x : Conclusi	ons and Fi	uture Work9	1
6.1.				
6.2.				
Reference	ruture scope		······································	74
Reference الملخص العربي				
/ ــــــــ				

List of Figures

Figure 2.1:	Cost typical domestic Solar Panel system	6
Figure 2.2:	Solar PV Capacity	7
Figure 2.3:	Iraq Solar Power	8
Figure 2.4:	Solar Radiation lines for other Monthly in Iraq	10
Figure 2.5:	Grid-Connected PV system with Battery	11
Figure 2.6:	Battery connected hybrid PV system	11
Figure 2.7:	Stand-alone PV System with Battery	12
Figure 2.8:	PV system stand-alone for House	12
Figure 2.9:	The load Profile of the House Holds	14
Figure 2.10:	Solar Radiation from Sunrise to Sunset	15
Figure 2.11:	Daily Average Solar Radiation levels in level different Tilt	16
Figure 2.12:	Monthly average solar radiation levels different tilt	16
Figure 2.13:	Map window for PVGIS	17
Figure 2.14:	The graph of the estimated monthly PV output	19
Figure 2.15:	Estimated solar irradiation monthly graph for the same location	19
Figure 2.16:	Data PV Module	20
Figure 3.1:	Over block Diagram of Proposed PV Energy System	22
Figure 3.2:	Battery Connected stand-alone PV system	23
Figure 3.3:	Series (a) and parallel (b) Connection of identical cells	23
Figure 3.4:	Photovoltaic cells, modules, panels and arrays	24
Figure 3.5:	Equivalent Circuit of solar cell	25
Figure 3.6:	Photovoltaic Simulink model	27
Figure 3.7:	(a)I-V curve, (b) P-V curve at different Irradiation level	28
Figure 3.8:	(a) I-V curve, (b) P-V curve at different temperature level	28
Figure 3.9:	DC-DC Converter	29
Figure 3.10:	DC-DC BOOST Converter with MPPT controller	30
Figure 3.11:	Conversion ratio vs. duty cycle for the boost converter	30
Figure 3.12:	Waveforms of current and voltage in boost converter operating in continuous mode	31
Figure 3.13:	Bidirectional Buck-Boost Converter	32
Figure 3.14:	Constant Cuurent	34
Figure 3.15:	Constant Voltage	35
Figure 3.16:	Two-Step Charging	35
Figure 3.17:	The Pulse Charging Wave Form	36
Figure 3.18:	Battery Equivalent Circuit	36
Figure 3.19:	Battery Model in Charging and Discharging	37
Figure 3.20:	Exponential Zone of Lead-Acid	38
Figure 3.21:	The Battery Simulation Program Input Data	39
Figure 3.22:	The Matlab Simulink Battery Model	40
Figure 3.23:	Characteristics of the Lead-Acid Battery	40
Figure 3.23:		
1 1guit 3.24.	Discharging Characteristics of Battery	41

Figure 3.25:	Three –Phase Voltage Source Inverter (VSI)	42
Figure 3.26:	Some Relevant Voltage Wave Forms Output by a 3-Phase Square Wave VSI	43
Figure 3.27:	Matlab Simulink Scheme of Pulse Width Modulation	44
Figure 3.28:	Bipolar Sinusoidal PWM	44
Figure 3.29:	Low-Pass-Filter with Damping Resistance	45
Figure 4.1:	Effect of light on the Solar Cell	46
Figure 4.2:	MPPT Controller with Boost Converter	47
Figure 4.3:	Maximum power from perturb and observer	48
Figure 4.4:	The flow chart of the P&O algorithm	49
Figure 4.5:	(P-V) Characteristic Curve under Incremental Conductance	50
Figure 4.6:	Incremental Conductance algorithms	50
Figure 4.7:	Control strategy for buck –boost converter connected with battery	51
Figure 4.8:	Block Diagram of a Process with a Feedback PID Controller	52
Figure 4.9:	Fractional Order PID Control System	53
Figure 4.10:	FOPID VS PID: from point to plane: (a) integer order controller and (b) Factional order controller	54
Figure 4.11:	General Structure of a FOPID Controller	55
Figure 4.12:	Optimal Solution after Number of Iteration	57
Figure 4.13:	PSO Flow chart	58
Figure 4.14:	Flow chart of simple GA process Curve	62
Figure 4.15:	Representation of a nest in the cuckoo search algorithm	64
Figure 4.16:	CS Flow Chart	65
Figure 5.1:	Proposed Simulink model used for simulation	69
Figure 5.2:	MPPT & Boost Converter	70
Figure 5.3:	Solar Irradiance	70
Figure 5.4:	Modeling of Perturbs and Observes Technique	71
Figure 5.5:	Maximum Power from PV array with P&O	72
Figure 5.6:	Maximum Current from PV array	72
Figure 5.7:	Maximum Voltage from PV array	73
Figure 5.8:	Modeling of Incremental Conductance Technique	74
Figure 5.9:	Maximum Power from PV array	74
Figure 5.10:	Maximum Current from PV array	75
Figure 5.11:	Maximum Voltage from PV array	75
Figure 5.12:	Changes in (Irradiance and Temperature)	77
Figure 5.13:	Circuit breaker to change load	78
Figure 5.14:	Particles Swarm Optimization Toolbox	79
Figure 5.15:	Vdc boost converter using ISE in PSO	79
Figure 5.16:	Error of the System with PSO Based Control in ISE	79
Figure 5.17:	Genetic Tool box	80
Figure 5.18:	Vdc Boost Converter using ISE in GA	81
Figure 5.19:	Error of the system with GA based Control in ISE	81
C	Vdc Boost Converter With (PSO, AWPSO, AACPSO, MAACPSO, and	= -
Figure 5.20:	GA) Based on FOPI Controller and IAE	84

Figure5.21:	Vdc Boost Converter With (PSO, AWPSO, AACPSO, MAACPSO, and GA) Based on FOPI Controller and ISE	85
Figure5.22:	Vdc Boost Converter With (PSO, AWPSO, AACPSO, MAACPSO, and GA) Based on FOPI Controller and ITAE	85
Figure 5.23:	Output Voltage (VO) in load Condition	87
Figure5.24:	Output Current (IO) in load Condition	87
Figure 5.25:	Output Power System in load Condition	88
Figure5.26:	Output Voltage (VO) under load Variation	88
Figure5.27:	Output Current (IO) under load Variation	89
Figure5.28:	Output Power System Under Load Variation	89
Figure5.29:	Voltage Inverter	89

List of Tables

Table 1.1	: Evolution of PV Markets-IEA-March 2016	2
Table 2-1	: Estimated Global Average Price for PV	7
Table 2-2	: The House Hold Load Data	13
Table 2-3	: The Coordination of the Location and Best tilt Angles of the Solar Panels	14
Table 2-4	: System Energy Production Estimate	18
Table 3-1	: Single Module Ratings	27
Table 3-2	: Battery Technical Data	39
Table 5-1	: Maximum Power and Current with Using P&O Technique	71
Table 5-2	: Maximum Power and Current with Using IC technique	74
Table 5-3	: Final parameter of (FOPID&FOPI&PID&PI) From PSO	80
Table 5-4	: Response Performance Using (FOPID&FOPI&PID&PI) From PSO	80
Table 5-5	: Final parameter of (FOPID&FOPI&PID&PI) From GA.	82
Table 5-6	: Response Performance Using (FOPID&FOPI&PID&PI) From GA	82
Table 5-7	: Parameters Values of (PSO&AWPSO) and Description for Simulation Mode	82
Table 5-8	: Parameters Values of (AACPSO&MAACPSO) Description for Simulation Model	83
Table 5-9	: GA Parameters Values and Description for Simulation Model and	84
Table 5-10	: Simulation Results Values Using (PSO, AWPSO, AACPSO, and MAACPSO, GA,CS)	86

Nomenclature

List of symbols and Abbreviations:-

AWPSO : Adapted Weighted Particles Swarm Optimization.

AACPSO : Adapted Accelerated Coefficient Particle Swarm Optimization.

BESS : Battery Energy Storage System.

CF : Capacity Factor
C : Capacity of Battery

c1 : Self-Confidence (Cognitive) Factor
c2 : Swarm Confidence (Social) Factor.

CS : Cuckoo Search (CS)

D : Duty cycle

DOD : Depth of Discharge

Ed : Average daily electricity production from the given System

Em : Average monthly electricity production from the given System

ED : Daily electricity requirement FOPID : Fractional-Order PID Controller

GA : Genetic Algorithm

GAOT : Genetic Algorithms Optimization Toolbox

 $gbest_k^i$: The Best Particle Position Based on Swarm's Experience.

HD : Average daily sum of global irradiation (KWh/ m^2) HM : Average Monthly sum of global irradiation (KWh/ m^2)

Io : The PV module saturation current (A).

Isc : Short-circuit current

Iph : the light generated current in a PV module (A)

Ipv : output current of a PV module (A)

INC : Incremental-ConductanceISE : Integral of square errorIAE : Integral of Absolute error

ITAE : Integral of Time Weighted Absolute Error

IGBT : insulated-gate bipolar transistor

i : Iteration Index
Kp : Proportional gain
Ki : Integral gain
Kd : Derivative gain

MOSFET : Metal Oxide Semiconductor Field Effect Transistor

MAACPSO : Modified Adaptive Accelerated Coefficient particle swarm Optimization

MPPT : Maximum power point tracking.

MPP : Maximum power point
MATLAB : Matrix Laboratory

Np : the number of cells connected in parallel
Ns : the number of cells connected in series

O.S% : The Percentage of Overshoot

 $pbest_k^i$: The Best Particle Position Based on its Experience PVGIS: Photovoltaic Geographical Information Survey

P pv : Rated Peak Power

PID : Proportional-Integral-Derivative controller

PSO : Particle Swarm Optimization

PV : Photovoltaic

P&O : Perturb and Observe

Q : Electron charge = 1.6×10 -19 C RAPs : Remote Area Power Supply

Rs : The Series Resistance of a PV Module

r1 and r2 : Random Numbers Generated between Zero and One

SHS : Solar Home System

S : Switch

SOC : State of Charge Temp : temperature

Tr : the reference temperature = 298 K

Ts : Settling Time Tr : Rise Time

VSI : Voltage source inverter Voc : Open-circuit voltage

 V_K^i : Velocity of $i^{th}ith$ particle at k^{th} iteration

 χ_k^i : Current Position of the i^th Particle

 λ : Order of s in integral μ : Order of s in derivative

Abstract

At present the main source of energy for our needs come from fossil fuel, but unfortunately these materials are of limited existence in our planet. Solar-powered photovoltaic system provides a clean energy solution to this problem. This thesis discusses modeling and controlling of a Stand-Alone Photovoltaic (SAPV) system. The design of a stand-alone photovoltaic (PV) system is to provide electricity for the required purposes. The system is based on the data from a solar radiation site as well as electric load data from one of the houses in the same site. A Photovoltaic Geographical Information Survey (PVGIS) website is used as an estimation of the average daily sum of global irradiation depending on the latitude and longitude of the Iraqi site.

Independent Control Loops are proposed where an efficient energy management for standalone PV system is elaborated. The scheme comprises of two control loops namely inner and outer loops to manage a standalone PV system with a satisfactory response. The main task of the inner control loop is to extract and track maximum power from a standalone PV system, through the implementation of a Maximum Power Point Tracking (MPPT) control loop and using the best techniques of Incremental Conductance (INC) and Perturb and Observe (P&O) Algorithm which extracts the maximum power from PV module under different solar irradiation. Moreover, the outer control loop is equipped with a battery for a smooth control of the power between the source and the load. Several optimization algorithms had been used to tune FOPI control loops by generating their optimal settings where the same "Particle Swarm Optimization" (PSO), "Adapted Weighted Particles Swarm Optimization" (AWPS), "Adapted Accelerated Coefficient Particle Swarm Optimization" (AACPSO), "Modified Adapted Accelerated Coefficient Particle Swarm Optimization" (MAACPSO) and "Genetic algorithm "(GA) "Cuckoo Search "(CS). The effectiveness of FOPI controller is ensured in comparison with the classic controller. In this comparison the optimization PSO Toolbox and GA toolbox are used to get the parameters of the proposed controller to obtain the desired response to control the process of charging and discharging the battery to keep the input dc voltage constant at steady state. The integral of the square error is utilized to define the proposed system objective function.

Various scenarios include sun irradiance variations and load fluctuations are presented to demonstrate the theoretical analysis, effectiveness, and feasibility of the proposed energy management strategy. The simulation results of the entire standalone PV system are described along with a comprehensive simulation results that discover the feasibility of the system.

Keywords:

PV stand-alone system, System sizing, battery bank, Maximum Power Point Tracking (MPPT), Fractional Order (FOPID), Particle Swarm Optimization (PSO), genetic optimization (GA), MATLAB.

Chapter One: Introduction

1.1. Overview

Most of the energy comes from fossil fuels such as coal, diesel, petrol and gas, which is 80% of our current energy production. The demand for this type of energy is expected to rise by almost a half over the next two decades which may causes some fear that our energy resources are starting to run down which in turn has a very serious disturbing consequences on the global quality of life and on the global economy. Lack of electricity is one of the main hurdles in the development of rural areas in many countries. On other hand, the increasing demand for energy has two major impacts that is energy crisis and climate change where the world suffers from numerous environmental troubles due to the harmful gases emitted from burning fossil fuels. These gases destruct the ozone layer and cause a negative climatic changes [1] where all of these issues encourage the investigation of using solar, wind and other renewable types of energies for the generation of electrical power as given in [2],[3]. The greenhouse gas mitigation efforts in the electricity sector have emphasized the accelerated deployment of Energy Efficiency (EE) measures and renewable energy (RE) resources as presented in [4].

These above-stated reasons drove researchers towards the development of renewable energy sources including the solar system, and make them more reliable and beneficial. Renewable Energy is defined as the energy that comes from naturally generated resources like sunlight, wind, and rain. In recent years, applications that use Photovoltaic (PV) systems are growing continuously. The current trend is to optimize these systems by ensuring their functionality with maximum efficiency as given in [5]. The word "Photovoltaic" is composed of two terms: Photo means light and Voltaic means voltage. Solar Energy is directly converted into electrical energy by using solar cells. Simply, we can say that PV systems are just like any other electrical power generating systems but the equipment used for a PV system is different than that used for the conventional generating systems. The principles of operation and method of interfacing with other surrounding electrical systems remain the same. Solar energy has become a promising, popular and alternative source of energy because of its advantages such as its abundance, pollution free.

A PV system requires less maintenance compared with wind, hydroelectric and tidal systems because all these systems require a rotating instrument for energy conversion which is not required for conversion of the solar energy to electrical energy. In late 1950s the first conventional PV cells were produced and throughout the next ten years PV cells were mainly used for providing electrical power for earth-orbiting satellites. In the 1970s the cost of PV modules went down due to the improvements in its manufacturing, quality and performance. The reduction in their costs opened up various opportunities for powering remote terrestrial applications which includes battery charging for navigational systems and other critical low-power requirements which are isolated from utility grid where the standalone operation is the best option. Due to the dramatic increase of international applications for PV systems to power the rural health clinics, refrigeration, water pumping, telecommunications, and other off-grid households,

It remains portion of the present world market for the photovoltaic products. Nowadays, production of PV modules is growing at approximately 25% per year, and the implementation of PV systems on buildings and interconnection to utility networks are increasing rapidly, become of major programs in the developed countries, total global capacity installed from PV systems shown in Table (1.1).