

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING MECHATRONICS ENGINEERING

Regenerative Anti-Lock Braking System

A Thesis submitted in partial fulfillment of the requirements of the

M.Sc. in Mechanical Engineering

By

Mohamed Nabil Mohamed Mohamed Elghitany

B.Sc., Mechanical Engineering, Mechatronics Engineering Department Ain Shams University, 2012

Supervised by

Prof. Dr. Farid A. Tolbah.

Prof. Dr. Magdy Abd Elhamid
(May God have mercy on him)

Dr. Adham Mohamed Abd Elkader

Cairo – (2018)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Regenerative Anti-Lock Braking System

By

Mohamed Nabil Mohamed Mohamed Elghitany

B.Sc., Mechanical Engineering, Mechatronics Engineering Department Ain Shams University, 2012

EXAMINERS COMMITTEE

Name	Signature
Prof.	
Prof.	
Prof	
	Data: / /2019

Statement

This thesis is submitted as a partial fulfillment of M.Sc. degree in Mechanical engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis and no part of it has been submitted for a degree or qualification at any other scientific entity.

Mohamed Nabil Mohamed Mohamed Elghitan	y
Signatur	e
	••

Date: / / 2018

Researcher Data

Name: Mohamed Nabil Moahmed Mohamed Elghitany

Date of birth: 18 September 1990

Place of birth: Cairo, Egypt

Last academic degree: BSc. in mechanical Engineering

Field of specialization: Mechatronics Engineering

University issued the degrees: AIN SHAMS University

Date of issuing degree: July 2012

Current job: Demonstrator at Mechatronics Department, Faculty of Engineering,

AIN SHAMS University

Acknowledgment

The researcher is grateful to his mentors; Prof. Dr. Farid A. Tolbah, Dr. Adham Mohamed Abd El-kader and the unforgettable Prof. Dr. Magdy Abdel hamid who passed away before this work come to an end, for their devoted support and provision during the research period.

I would like to thank all my colleagues in mechatronics department in Ain Shams university, I would special thank to Eng. Diaa Emad, Eng. Ahmed Abd El-shakour and Eng. Mostaffa Arafa for their valuable help to do the experimental test rig. Also, I want to special thank to my supervisor Dr. Adham Mohamed Abd El-kader for his tired and hard work with me to be able to introduce this work.

I would like to thank the directors of the Automotive lab at faculty of Engineering, Ain Shams university; Dr. Ibrahim Omraan and Dr. Mohamed Abd ELaziz for supporting me to perform my experimental test rig in the Automotive lab and providing me with material and tools to do the mechanical model, also allowing me to use the hybrid golf cart in the automotive lab to do my experiments on it.

Abstract

The braking system of vehicles uses the usual technology of hydraulic braking that generates thermal energy out of the loss of kinetic energy which is being resulted from difference in motion of pads and wheels. The Regenerative Braking System (RBS) works on converting the excess kinetic energy into electrical energy that can be used in recharging the car battery during the vehicle deceleration.

The usual RBS has some limitations that are related to the vehicle speed; as in low speed which is less than 10 km/h the system is inefficient to convert the kinetic energy and generate current. Also the RBS is incapable of completely stopping the vehicle regardless of the traveling speed.

The study in this conducted thesis emphasizes the Regenerative Anti-lock Braking System (RABS) in saving energy and reducing energy loss, also enhancing braking performance at low speed rates by detecting the type of terrain surface.

RABS comprehensive model has been constructed on Matlab / Simulink for simulation purposes in order to collect reliable results about system performance and calculate the speed ranges of the wheel which differ according to the type of the surface after the first hit on the brakes in a given time to use these speed ranges in terrain detection process in the experimental test rig.

The experimental test rig has been constructed on a hybrid golf cart in two different modes; one of which is speed reducing mode and the other one is stopping mode and shows multiple conditions of braking such as braking on

non-slippery surfaces as dry-surface (asphalt) and braking on slippery surfaces as wet-surface (asphalt) and oily-surface (asphalt).

It is found from the simulation and test rig that the RABS which is conducted in this thesis provides satisfactory braking performance and recovered energy reaches to 30 % of energy losses in thermal energy.

Key words: Conventional Braking System, Anti-Lock braking System, Regenerative Braking, Hybrid Electric Vehicle, Motor Generator, State Of Charge

Contents

Statement	I
Researcher Data	II
Acknowledgment	III
Abstract	IV
Contents	VI
List of Figures	IX
List of Tables	XII
List of Technical terms and abbreviations	XIII
Chapter 1: Literature review and Introduction	1
1.1. Introduction	1
1.2. Energy and Hybrid Electrical Vehicle (HEV)	2
1.3. Meaning of the RBS	2
1.4. Anti-lock Braking System (ABS)	4
1.5. Meaning of the RABS	6
1.6. Related works	6
1.7. Problem Statement	11
1.8. Work Objective	11
1.9. Scope of Work	11
1.10. Thesis Summary	12
Chapter 2: Modeling and simulation of the RABS	13
2.1. The modeling of the RABS	14
2.1.1. Vehicle and wheel dynamics	
2.1.2. Dynamics of the MG	17
2.1.3. RABS mechanical brake	20
2.1.4. RABS controller	20
2.1.5. Speed sensor and slip-ratio calculator	23
2.2. The simulation of the RABS	25
2.2.1. ABS simulation	25
2.2.2. Electric MG simulation	26
2.2.3. RABS simulation in speed reducing mode	28
2.2.4. RABS in stopping mode	29
2.3. Speed ranges on different types of terrain surfaces	31
Chapter 3: RABS construction on a hybrid golf cart	32

3.1. The MG sizing	32
3.2. Torque transmission system	33
3.3. RABS construction and assembly	35
3.4. Speed sensor	36
3.4.1. Wheel angular speed sensor	36
3.4.2. Hybrid golf cart linear speed	38
3.5. Calibration of the infrared speed sensor	38
3.6. The MG current sensor	39
3.6.1. Current sensor filtering	40
3.7. Calibration of the current sensor	42
3.8. RABS controller	43
3.8.1. Integrated development environment (IDE)	46
3.9. RABS controllers programming	47
3.9.1. Current measuring controller code	47
3.9.2. Speed measuring controller code	47
3.9.3. RABS main controller code	48
3.10. RABS controllers hardware connections	48
Chapter 4: Implementation, Results and Discussion	50
4.1. Implementation of the Proposed RABS	50
4.1.1. Terrain surface preparation	50
4.1.2. The power connection to the MG	50
4.2. Results	51
4.2.1. Speed reducing mode	52
4.2.2. Stopping mode	56
4.3. Discussion	66
Chapter 5: Conclusions and future work	68
5.1. Conclusion	68
5.2. Future work	68
Appendix A 'Calibration of the Infrared speed sensor'	70
Calibration test (1)	70
Calibration test (2)	70
Calibration test (3)	71
Appendix B 'Calibration of the Current sensor'	72
Calibration test (1):	72
Calibration test (2):	72
Calibration test (3):	73

Calibration test (4):	74
Calibration test (5):	75
Appendix C 'Arduino uno microcontroller specifications'	76
Appendix D 'Current measuring Arduino code'	77
Appendix E 'speed measuring Arduino code'	78
Appendix F 'RABS Arduino code'	79
Chapter 6: Bibliography	86

List of Figures

Figure 1.1: Mechatronics engineering system discipline
Figure 1.2: Typical RBS (Adapted from [17])
Figure 1.3: ABS effect in direction control of the vehicle (Adapted from[20])5
Figure 1.4: ABS effect on the stopping distance of the vehicle (Adapted from[20]) 5
Figure 2.1: Schematic diagram of RABS
Figure 2.2: Regenerative system dynamic model (Adapted from. [27])14
Figure 2.3: Wheel model of Golf cart (Adapted from.[39])
Figure 2.4: Road adhesive coefficient (Adapted from [27])
Figure 2.5: Electric MG
Figure 2.6: Characteristics of efficiency of a MG (Adapted from. [43])19
Figure 2.7: Flow chart for the Brake control22
Figure 2.8: Coefficient of adhesion with slip ratio in various road conditions (Adapted
from. [37])
Figure 2.9: ABS Simulink diagram
Figure 2.10: Electric MG simulation
Figure 2.11: RABS Simulink diagram in the first mode (speed reducing mode)28
Figure 2.12: RABS Simulink diagram in the second mode (stopping mode)30
Figure 3.1: The RABS MG (DENSO, DAN 994)
Figure 3.2: The transmission system of the RABS 1.Diffrential gearbox (1:12) 2.
Coupler 3. Sprocket chain system (1:2.5) 4. Sprocket chain system (1:1)34
Figure 3.3: RABS assembly 1.Alternator 2.Electromagnetic clutch 3.sprocket chain
with sprocket ratio (1:1) 4.second sprocket chain 5. Bearings chair 6. The MG
electric wires36
Figure 3.4: An infrared sensor which used to measure wheel speed37
Figure 3.5: The photo interrupter of an infrared sensor which used to measure wheel
speed 1.Rear wheel 2. photo interrupter wheel 3. Infrared speed sensor 4. Sensor
fixation mechanism
Figure 3.6: The photo interrupter of a Tachometer sensor which used to calibrate the
infrared sensor 1.Tachometer sensor 2. Photo interrupter wheel 3. Tachometer
wires 4. Tachometer fixation mechanism38

Figure 3.7: The ACS758 IC current sensor which used to measure the current
generated from the MG (Adapted from [17])40
Figure 3.8:ACS758 current sensor V_{out} versus sensing output current I_P at various V_{cc}
(Adapted from[17])40
Figure 3.9: The ACS758 IC current sensor with low bass filter41
Figure 3.10: The known value resistance (5m Ω) which is used in calibration test42
Figure 3.11: Decision algorithm of the RABS main controller45
Figure 3.12: Arduino UNO
Figure 3.13: Arduino IDE
Figure 3.14: Microcontrollers connections circuit 1.Main controller 2.Speed measuring
controller 3. Current measuring controller 4.LCD Display 5.Relay board48
Figure 4.1: The MG wiring diagram connection51
Figure 4.2: Simulation and test rig Wheel speed in speed reducing mode on the dry-surface (asphalt)53
Figure 4.3: Simulation and test rig Vehicle speed in speed reducing mode on dry- surface (asphalt)53
Figure 4.4: Simulation and test rig Rear wheel slip-ratio in speed reducing state on the dry-surface (asphalt)54
Figure 4.5: Simulation and test rig Generator load torque in speed reducing mode on the dry-surface (asphalt)55
Figure 4.6: Simulation and test rig Regenerated current in speed reducing mode on the dry-surface (asphalt)55
Figure 4.7: Simulation and test rig Wheel speed in stopping mode on dry-surface (asphalt)
Figure 4.8: Simulation and test rig Vehicle speed in stopping mode on dry-surface (asphalt)
Figure 4.9: Simulation and test rig Rear wheel slip ratio in stopping mode on dry-surface (asphalt)58
Figure 4.10: Simulation and test rig Generator load torque in stopping mode on dry-surface (asphalt)59
Figure 4.11: Simulation and test rig Regenerated current in stopping mode on dry-surface (asphalt)59
Figure 4.12: Simulation and test rig Wheel speed in stopping mode on wet-surface (asphalt)

Figure 4.13: Simulation and test rig Vehicle speed in stopping mode on wet-surface
(asphalt)
Figure 4.14: Simulation and test rig Rear wheel slip ratio in stopping mode on wet -
surface (asphalt)62
Figure 4.15: Simulation and test rig Generator load torque in stopping mode on wet-
surface (asphalt)63
Figure 4.16: Simulation and test rig Regenerated current in stopping mode on wet-
Surface (asphalt)63
Figure 4.17: Simulation and test rig Wheel speed in stopping mode on the oily-surface
(asphalt)64
$ Figure \ 4.18: Simulation \ and \ test \ rig \ Vehicle \ speed \ in \ stopping \ mode \ on \ the \ oily-surface $
(asphalt)64
Figure 4.19: Simulation and test rig Rear wheel slip-ratio in stopping mode on the oily-
surface (asphalt)65
Figure 4.20: Simulation and test rig Generator load torque in stopping mode on the
oily-surface (asphalt)65
Figure 4.21: Simulation and test rig Regenerated current in stopping mode on the oily-
surface (asphalt)66

List of Tables

Table 2.1: Speed ranges for different terrain surfaces types3
Table 3.1: Current sensor (ACS758 IC) current resolution and the levels of the noise
versus bandwidth (Adapted from[17])4
Table 3.2: The error results of the calibration tests of the current sensor (ACS758 IC)
and the calibration tests of the known resistance (5m Ω)4
Table 4.1: Braking performance in speed reducing state on the dry-surface (asphalt) .5
Table 4.2: Braking performance in stopping mode on dry –surface (asphalt)5
Table 4.3: Braking performance in stopping state on wet-surface (asphalt)6
Table 4.4: Braking performance in Stopping state on oily -surface (asphalt)6

List of Technical terms and abbreviations

RBS Regenerative Braking System

MG Motor Generator

ABS Anti-lock Braking System

RABS Regenerative Anti-lock Braking System

EV Electric Vehicle

HEV Hybrid Electric Vehicle

SOC State Of Charge percentage

EM Electric Motor

RPM Revolutions Per Minute

IDE Integrated **D**evelopment **E**nvironment